Next Article in Journal
A Study of p-Laplacian Nonlocal Boundary Value Problem Involving Generalized Fractional Derivatives in Banach Spaces
Previous Article in Journal
Trust Region Policy Learning for Adaptive Drug Infusion with Communication Networks in Hypertensive Patients
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Solutions to the Schrödinger Equation: Nonlocal Terms and Geometric Constraints

by
Irina Petreska
1,
Pece Trajanovski
1,2,
Trifce Sandev
1,2,3,
Jonathan A. M. Almeida Rocha
4,
Antonio Sérgio Magalhães de Castro
4 and
Ervin K. Lenzi
4,5,*
1
Institute of Physics, Faculty of Natural Sciences and Mathematics— Skopje, Ss. Cyril and Methodius University in Skopje, Arhimedova 3, 1000 Skopje, Macedonia
2
Research Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia
3
Department of Physics, Korea University, Seoul 02841, Republic of Korea
4
Departamento de Física, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti 4748, Ponta Grossa 84030-900, PR, Brazil
5
Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá 87020-900, PR, Brazil
*
Author to whom correspondence should be addressed.
Mathematics 2025, 13(1), 137; https://doi.org/10.3390/math13010137
Submission received: 1 November 2024 / Revised: 17 December 2024 / Accepted: 27 December 2024 / Published: 1 January 2025

Abstract

:
Here, we investigate a three-dimensional Schrödinger equation that generalizes the standard framework by incorporating geometric constraints. Specifically, the equation is adapted to account for a backbone structure exhibiting memory effects dependent on both time and spatial position. For this, we incorporate an additional term in the Schrödinger equation with a nonlocal dependence governed by short- or long-tailed distributions characterized by power laws associated with Lévy distributions. This modification also introduces a backbone structure within the system. We derive solutions that reveal various behaviors using Green’s function approach expressed in terms of Fox H-functions.

1. Introduction

Some common features of the complex media leading to anomalous dynamics in classical and quantum systems are heterogeneity, anisotropy, and nonlocality. In the classical limit, it was shown that these complexities lead to non-Gaussian behavior of the diffusion processes, which can be sufficiently modeled by adequate generalizations of the diffusion equation [1,2,3,4,5,6,7]. Such generalizations often include time and space-fractional operators [2,7,8,9,10], providing a powerful tool for modeling heterogeneous and anisotropic media with memory [7,11,12,13,14,15]. On the other hand, an explicit incorporation of the anisotropy by imposing geometric constraints, e.g., comb-like constraints in the conventional partial differential equations of integer order, also leads to anomalous behavior and it can also be connected to fractional models [16,17,18,19]. Another ingredient that affects the anomalous dynamics in complex media is nonlocality. In general, nonlocality can be spatial and temporal. The spatial nonlocality is associated with long-range correlations and it cannot be neglected when the dynamics of the observed particle are substantially influenced not only by the nearest neighbours, but also by all other particles of the system. In mathematical models, this effect can be represented through appropriately formulated potential energy terms that depend on the interparticle distances. Temporal nonlocality indicates the connection between events, which results in the memory effects and causes the non-Markovianity. The inclusion of temporal nonlocality in mathematical diffusion models can be achieved using the time-dependent memory kernel [20,21,22,23,24].
The present work deals with the temporal and spatial nonlocalities in quantum systems. Comprehending the quantum dynamics in complex realistic environments often requires an extension of the models based on the standard Schrödinger equation [25,26,27,28]. Suitable adaptations, comprising heterogeneity, anisotropy, and nonlocality in a quantum context, have found applications in modeling of the anomalous dynamics in disordered materials [29], anomalous diffusion and transport in low-dimensional systems [29,30,31], and cold atomic gases in optical lattices [32,33,34]. In this paper, we introduce a model based on the time-dependent three-dimensional Schrödinger equation with a nonlocal term, given by
i ћ t ψ ( x , y , z , t ) = ћ 2 2 m 2 ψ ( x , y , z , t ) δ ( y ) 0 t d t d x d z K x x , z z , t t ψ ( x , y , z , t ) ,
where K ( x , z , t ) contains both spatial and temporal nonlocal correlations. The Dirac delta function in the nonlocal potential energy operator enables long-range interactions to be restricted only at y = 0 , which means that the motion of the particle is only affected by these correlations in the x O z - plane. At the same time, for y 0 , the model describes a free particle. This model grasps the features of two-dimensional materials and provides an elegant way to introduce coupling between the directions, which distinguishes it from other nonlocal terms that were studied previously [22,35,36,37,38,39,40]. It should be emphasized that in the comb-like models, the Dirac delta function is introduced in the kinetic energy operator, achieving geometric constraints suitable for modeling the anisotropic branched structures without any potential energy terms, which means in the absence of potential. generalizations of the Schrödinger equation in two and three dimensions, involving comb-like geometric constraints, were considered in [17,41]. Hence, the model investigated in the present paper widens the previous research by including anisotropy in the interactions.
The paper is organized as follows. In Section 2, we provide detailed solutions for the considered Schrödinger Equation (1) using the Green’s function methods. In addition, in Section 2, we analyze how different nonlocal kernels impact the system’s behavior and induce patterns suggestive of anomalous spreading. In Section 3, we discuss the reduced Green function to show the effect on the wave package spreading. Our findings and their implications for nonlocal interactions in quantum systems are discussed in Section 4.

2. Schrödinger Equation

Let us start our discussion on the solutions to Equation (1), i.e.,
i ћ t ψ ( x , y , z , t ) = ћ 2 2 m 2 x 2 + 2 y 2 + 2 z 2 ψ ( x , y , z , t ) δ ( y ) 0 t d t d x d z K x x , z z , t t ψ ( x , y , z , t ) .
As we mentioned in the introduction, the nonlocal term influences the spreading of the initial wave package, mainly at y = 0 , which means within the x O z -plane. Equation (2) is subjected to the boundary condition lim | r | ψ ( r , t ) = 0 and the initial condition ψ ( r , 0 ) = φ ( r ) , where φ ( r ) is a normalized function and r = ( x , y , z ) . To find the solutions for this equation and analyze the effect of the nonlocal term on the propagation of the initial condition, we use integral transforms (Fourier and Laplace) and the Green function approach [42].
By applying the Fourier transform (x and z variables), which is defined by f ( k ξ ) = F { f ( ξ ) } = f ( ξ ) e i k ξ ξ d ξ , where ξ = { x , y , z } (thus, the inverse Fourier transform reads f ( ξ ) = F 1 { f ( k ξ ) } = 1 2 π f ( k ξ ) e i k ξ ξ d k ξ ), Equation (2) can be simplified to
i ћ t ψ ( k x , y , k z , t ) = ћ 2 2 m 2 y 2 ψ ( k x , y , k z t ) + ћ 2 2 m k x 2 + k z 2 ψ ( k x , y , k z , t ) δ ( y ) 0 t d t K k x , k z , t t ψ ( k x , y , k z , t ) .
By using the Green function approach, the solution for this equation can be found and written as follows:
ψ ( k x , y , k z , t ) = d y G ( k x , y , y , k z , t ) φ ( k x , k z , y ) ,
with the Green function obtained from the following partial differential equation
i ћ t G ( k x , y , y , k z , t ) + ћ 2 2 m 2 y 2 G ( k x , y , y , k z , t ) ћ 2 2 m k x 2 + k z 2 G ( k x , y , y , k z , t ) = δ ( y ) 0 t d t K k x , k z , t t G ( k x , y , y , k z , t ) + i ћ δ ( y y ) δ ( t ) ,
subjected to the conditions lim | y | G ( k x , y , y , k z , t ) = 0 and G ( k x , y , y , k z , t ) = 0 for t < 0 . By applying the Fourier transform (y variable), we may simplify Equation (2) and obtain
i ћ t G ( k x , k y , y , k z , t ) ћ 2 2 m k y 2 + k x 2 + k z 2 G ( k x , k y , y , k z , t ) = 0 t d t K ( k x , k z , t t ) G ( k x , y = 0 , y , k z , t ) + i ћ e i k y y δ ( t ) .
In the Laplace domain (the Laplace transform is defined by f ( s ) = L { f ( t ) } = 0 f ( t ) e s t d t and the inverse Laplace transform by f ( t ) = L 1 { f ( s ) } = 1 2 π i i + c i + c f ( s ) e s t d s ), the solution for Equation (6) is provided by
G ( k x , k y , y , k z , s ) = G f ( k x , k y , k z , s ) e i k y y + i ћ K ( k x , k z , s ) G f ( k x , k y , k z , s ) G ( k x , 0 , y , k z , s ) ,
where G f ( k x , k y , k z , s ) corresponds to the Green function for the free case in the absence of the nonlocal term, i.e.,
G f ( k x , k y , k z , s ) = 1 s + i ћ 2 m k x 2 + k y 2 + k z 2 .
From the previous results, after performing some calculations, it is possible to show that
G ( k x , y = 0 , y , k z , s ) = G f ( k x , y , k z , s ) 1 ( i / ћ ) K ( k x , k z , s ) G f ( k x , y = 0 , k z , s ) .
Thus, the solution for Equation (7), in the Fourier and Laplace domain, can be written as
G ( k x , y , y , k z , s ) = G f ( k x , y y , k z , s ) + ( i / ћ ) K ( k x , k z , s ) 1 ( i / ћ ) K ( k x , k z , s ) G f ( k x , y = 0 , k z , s ) G f ( k x , y , k z , s ) G f ( k x , y , k z , s ) ,
and can be rewritten as
G ( k x , y , y , k z , s ) = G f ( k x , y y , k z , s ) + ( i / ћ ) K ( k x , k z , s ) G f ( k x , y = 0 , k z , s ) 1 ( i / ћ ) K ( k x , k z , s ) G f ( k x , y = 0 , k z , s ) G f ( k x , | y | + | y | , k z , s ) ,
where
G f ( k x , y , k z , s ) = m 2 i ћ e s + i ћ k x z 2 2 m 2 m i ћ | y | s + i ћ k x z 2 2 m ,
and k x z 2 = k x 2 + k z 2 .
Now, we analyze some cases taking into account two cases for the kernel K ( k x , k z , s ) . The first one is K ( k x , k z , s ) = K x | k x | μ x K z | k z | μ z , which implies that K ( x , y , t ) δ ( t ) δ ( z ) K x / | x | μ x + 1 + δ ( x ) K x / | z | μ z + 1 and, consequently,
F 1 { L 1 { K ( k x , k z , s ) ψ ( k x , y , k z , s ) ; t } ; x , z } = F 1 K x | k x | μ x + K z | k z | μ z ψ ( k x , y , k z , t ) ; x , z = d x d z K μ z δ ( z z ) | x x | μ x + 1 + K μ x δ ( x x ) | z z | μ z + 1 ψ ( x , y , z , t ) ,
where K μ x ( z ) = ( 2 K x ( z ) / π ) 2 Γ ( 1 + μ x ( z ) ) sin ( μ x ( z ) π / 2 ) . This choice for the kernel results in long-range nonlocal effects geometrically constrained in the x O z -plane at y = 0 , which depends on the exponents μ x and μ z , as is evident from Equation (13), while there is no nonlocality in time. As we will see later, this nonlocality in space is responsible for the emergence of the anomalous dynamics in the system.
The other choice for the kernel is K ( k x , k z , s ) = K s + i ћ k x z 2 / ( 2 m ) γ k x z 2 , which results in the following form for the nonlocal term
F 1 L 1 K ( k x , k z , s ) ψ ( k x , y , k z , s ) ; t ; x , z = F 1 k x z 2 e i ћ k x z 2 2 m t K Γ ( 1 γ ) t 0 t d t ( t t ) γ ψ ( k x , y , k z t ) ; x , z = d z d x t G f , x z ( x x , z z , t ) 2 m K i ћ Γ ( 1 γ ) t 0 t d t ( t t ) γ ψ ( x , y , z , t ) ,
where
G f , x z ( x , z , t ) = m 2 π i ћ t e m 2 i ћ t x 2 + z 2
corresponds to the free particle propagator in two dimensions for the x and z directions. As we see from Equation (14), this choice for the kernel also results in a nonlocality in time, which is controlled by the parameter γ . As we will see later, such a nonlocal term in combination with the geometrical constraint of the nonlocal effects in the x O z -plane will induce anomalous dynamics in the system.
For the first case with the nonlocal term of form (13), after substituting the kernel K ( k x , k z , s ) in Equation (11), we have
G ( k x , y , y , k z , s ) = G f ( k x , y y , k z , s ) ( i / ћ ) K x | k x | μ x + K z | k z | μ z G f ( k x , 0 , k z , s ) 1 + ( i / ћ ) K x | k x | μ x + K z | k z | μ z G f ( k x , 0 , k z , s ) G f ( k x , | y | + | y | , k z , s ) .
By using Equation (12), the previous equation can be written as follows
G ( k x , y , y , k z , s ) = G f ( k x , y y , k z , s ) G f ( k x , | y | + | y | , k z , s ) + m 2 i ћ e s + i ћ k x z 2 2 m 2 m i ћ ( | y | + | y | ) s + i ћ k x z 2 2 m + i ћ m 2 i ћ K x | k x | μ x + K z | k z | μ z .
By performing the inverse Laplace transform, we can obtain that
G ( x , y , y , z , t ) = G f ( x , y y , z , t ) G f ( x , | y | + | y | , z , t ) + m 8 π i ћ t 3 0 t d t ¯ t ¯ + 2 m i ћ | y | + | y | e 1 4 t t ¯ + 2 m i ћ | y | + | y | 2 G f , x z ( μ x , μ z ) ( x , z , t ¯ , t ) ,
where
G f , x z ( μ x , μ z ) ( x , z , t ¯ , t ) = G f , x , μ x ( x , t ¯ , t ) G f , z , μ z ( z , t ¯ , t ) .
with
G f , x , μ x ( x , t ¯ , t ) = m 2 π i ћ t d x Φ μ x ( x , t ¯ ) e m ( x x ) 2 2 i ћ t , Φ μ x ( x , t ¯ ) = 1 | x | H 2 , 2 1 , 1 ћ t ¯ K x 2 ћ m i | x | μ x ( 1 , 1 ) , ( 1 , μ x 2 ) ( 1 , μ x ) , ( 1 , μ x 2 ) ,
and
G f , z , μ z ( z , t ¯ , t ) = m 2 π i ћ t d x Φ μ z ( z , t ¯ ) e m ( z z ) 2 2 i ћ t , Φ μ z ( z , t ¯ ) = 1 | z | H 2 , 2 1 , 1 ћ t ¯ K z 2 ћ m i | z | μ z ( 1 , 1 ) , ( 1 , μ z 2 ) ( 1 , μ z ) , ( 1 , μ z 2 ) .
Note that in previous results, we used the Fox H-function [43,44]:
H p , q m , n z | ( b q , B q ) ( a p , A p ) = H p , q m , n z | ( b 1 , B 1 ) , , ( b q , B q ) ( a 1 , A 1 ) , , ( a p , A p ) = 1 2 π i L h ( s ) z s d s , h ( s ) = Π j = 1 m Γ b j B j s Π j = 1 n Γ 1 a j + A j s Π j = m + 1 q Γ 1 b j + B j s Π j = n + 1 p Γ a j A j s ,
which, for the current cases, is reduced to the Lévy stable distribution, see Ref. [45],
L ( ξ ; α ) = F 1 e | k ξ | α = 1 | ξ | H 2 , 2 1 , 1 | ξ | α ( 1.1 ) , ( 1 , α 2 ) ( 1 , α ) , ( 1 , α 2 ) = 1 π α l = 0 ( 1 ) l Γ ( 2 l + 1 α ) ( 2 l ) ! ξ 2 l .
From the solution, which is represented through Fox H-functions, i.e., through Lévy stable distributions, the emergence of anomalous dynamics in the system due to the geometrically constrained long-range nonlocal term is evident. Note that for μ x = μ z = 2 , the Fox H-functions in Φ μ x ( x , t ¯ ) and Φ μ z ( z , t ¯ ) in Equations (20) and (21), respectively, reduce to the Gaussian distribution, as (see, for example, Ref. [43])
L ( ξ ; 2 ) = 1 | ξ | H 2 , 2 1 , 1 | ξ | 2 D t ( 1 , 1 ) , ( 1 , 1 ) ( 1 , 2 ) , ( 1 , 1 ) = 1 2 | ξ | H 1 , 1 1 , 0 | ξ | D t ( 1 , 1 2 ) ( 1 , 1 ) = 1 4 π D t e ξ 2 4 D t .
Graphical representation of the solution (18) for μ x = μ z = 2 is given in Figure 1.
For the second case with the nonlocal term of form (13), after substituting the kernel K ( k x , k z , s ) in Equation (11), we have
G ( k x , y , y , k z , s ) = G f ( k x , y y , k z , s ) ( i / ћ ) K s + i ћ k x z 2 / ( 2 m ) γ k x z 2 G f ( k x , y = 0 , k z , s ) 1 + ( i / ћ ) K k x z 2 s + i ћ k x z 2 / ( 2 m ) γ G f ( k x , y = 0 , k z , s ) G f ( k x , | y | + | y | , s ) .
Using Equation (12), the previous equation can be written as follows
G ( k x , y , y , k z , s ) = G f ( k x , y y , z , s ) G f ( k x , | y | + | y | , k z , s ) + m 2 i ћ e s + i ћ k x z 2 2 m 2 m i ћ ( | y | + | y | ) s + i ћ k x z 2 2 m + i ћ K m 2 i ћ k x z 2 s + i ћ k x z 2 / ( 2 m ) γ .
By performing the inverse Laplace transform, we can obtain that
G ( k x , y , y , k z , t ) = G f ( k x , y y , k z , t ) G f ( k x , | y | + | y | , k z , t ) + e i ћ 2 m t k x z 2 0 t d t t E 1 2 γ , 1 2 i ћ K m 2 i ћ | k x z | 2 t 1 2 γ G f , y ( y , y , t t ) ,
for 0 < γ < 1 / 2 , where
G f , y ( y , y , t ) = m 8 π i ћ t 3 | y | + | y | e m 2 i ћ t | y | + | y | 2 ,
and
E α , β ( z ) = k = 0 z k Γ ( α k + β ) ,
with z , β C , ( α ) > 0 is the two-parameter Mittag–Leffler function [46].
The inverse Fourier transform of the Equation (27) yields
G ( x , y , y , z , t ) = G f ( x , y y , z , t ) G f ( x , | y | + | y | , z , t ) + 0 t d t G f , x z ( μ , γ ) ( x , z , t , t ) G f , y ( y , y , t t ) ,
where
G f , x z ( μ , γ ) ( x , z , t , t ) = 1 t d k x 2 π e i k x x d k z 2 π e i k z z E 1 2 γ , 1 2 i ћ K m 2 i ћ k x z 2 t 1 2 γ e i ћ 2 m t k x z 2 .
Equation (31) combines two behaviors, one characterized by exponential relaxation and the other described in terms of a Mittag–Leffler function, which asymptotically has a power-law behavior, i.e., anomalous dynamics in the system. In this manner, the wave package has different spreading regimes when subjected to these dynamics. We note that for K = 0 , the Green function (31) reduces to the one for a free particle.

3. Reduced Green Functions

Now, we consider the reduced Green functions G R ( x , y , z , t ) to analyze how the nonlocal term with the dependence on space influences the behavior in each direction. For this, let us consider the case of Equation (2) with initial condition ψ ( x , y , z , t = 0 ) = δ ( x ) δ ( y ) δ ( z ) , where we have a nonlocal term only in space, i.e., K ( x , z , t ) = K ¯ ( x , z ) δ ( t ) . By performing the Fourier–Laplace transform of Equation (2), we have that
i ћ s G R ( k x , k y , k z , s ) 1 = ћ 2 2 m k x 2 + k y 2 + k z 2 G R ( k x , k y , k z , s ) K ¯ k x , k z G R ( k x , y = 0 , k z , s ) ,
from where we find
G R ( k x , k y , k z , s ) = 1 s + i ћ 2 m k x 2 + k y 2 + k z 2 + i ћ K ¯ k x , k z s + i ћ 2 m k x 2 + k y 2 + k z 2 G R ( k x , y = 0 , k z , s ) ,
i.e.,
G R ( k x , k y , k z , s ) = 2 m i ћ 2 m s i ћ + k x 2 + k z 2 + k y 2 + 2 m ћ 2 K ¯ k x , k z 2 m s i ћ + k x 2 + k z 2 + k y 2 G R ( k x , y = 0 , k z , s ) .
The inverse Fourier transform with respect to k y yields
G R ( k x , y , k z , s ) = 2 m i ћ 2 2 m s i ћ + k x 2 + k z 2 e 2 m s i ћ + k x 2 + k z 2 | y | + 2 m ћ 2 K ¯ k x , k z 2 2 m s i ћ + k x 2 + k z 2 e 2 m s i ћ + k x 2 + k z 2 | y | G R ( k x , y = 0 , k z , s ) ,
from where we have
G R ( k x , y = 0 , k z , s ) = 2 m i ћ 2 2 m s i ћ + k x 2 + k z 2 + 2 m ћ 2 K ¯ k x , k z 2 2 m s i ћ + k x 2 + k z 2 G R ( k x , y = 0 , k z , s ) ,
i.e.,
G R ( k x , y = 0 , k z , s ) = 2 m i ћ 2 2 m s i ћ + k x 2 + k z 2 1 1 2 m ћ 2 K ¯ k x , k z 2 2 m s i ћ + k x 2 + k z 2 .
If we exchange this relation in (32), we find
G R ( k x , k y , k z , s ) = 1 s + i ћ 2 m k x 2 + k y 2 + k z 2 1 1 + 2 m / ( i ћ ) 2 K ¯ k x , k z 2 2 m s i ћ + k x 2 + k z 2 .
From here (37), we see that the Green function is normalized if K k x , k z = 0 for { k x , k z } 0 , for which G R ( k x = 0 , k y = 0 , k z = 0 , s ) = 1 / s , i.e., d x d y d z G R ( x , y , z , t ) = 1 .
From this point, we can analyze the reduced Green functions, which are given by G R , x ( k x , s ) = G R ( k x , k y = 0 , k z = 0 , s ) , G R , y ( k y , s ) = G R ( k x = 0 , k y , k z = 0 , s ) and G R , z ( k z , s ) = G R ( k x = 0 , k y = 0 , k z , s ) . If we consider the nonlocal term of form (13), which was analyzed before, K ¯ k x , k z = K x | k x | μ x K z | k z | μ z , and thus
G R ( k x , k y , k z , s ) = 1 s + i ћ 2 m k x 2 + k y 2 + k z 2 1 1 [ 2 m / ( i ћ ) 2 ] K x | k x | μ x + K z | k z | μ z 2 2 m s i ћ + k x 2 + k z 2 .
Thus,
G R , x ( k x , s ) = 1 s + i ћ 2 m k x 2 1 1 [ 2 m / ( i ћ ) 2 ] K x | k x | μ x 2 2 m s i ћ + k x 2 .
G R , y ( k y , s ) = 1 s + i ћ 2 m k y 2 ,
G R , z ( k z , s ) = 1 s + i ћ 2 m k z 2 1 1 [ 2 m / ( i ћ ) 2 ] K z | k z | μ z 2 2 m s i ћ + k z 2 .
By performing the inverse of the Fourier and Laplace transform, the previous equations are written as follows:
G R , x ( x , t ) = d k x 2 π e i k x x E 1 2 i ћ K x m t 2 i ћ | k x | μ x e i ћ 2 m t k x 2 = m 2 π i ћ t d x Ω μ x ( x , t ) e m ( x x ) 2 2 i ћ t ,
Ω μ x ( x , t ) = 1 | x | H 3 , 3 2 , 1 ћ t K x 2 ћ m i | x | μ x ( 1 , 1 ) , ( 1 , 1 2 ) , ( 1 , μ x 2 ) ( 1 , μ x ) , ( 1 , 1 ) , ( 1 , μ x 2 ) ,
G R , y ( y , t ) = m 2 π i ћ t e m 2 i ћ t y 2 ,
and
G R , z ( z , t ) = d k z 2 π e i k z z E 1 2 i ћ K z m t 2 i ћ | k z | μ z e i ћ 2 m t k x 2
= m 2 π i ћ t d z Ω μ z ( z , t ) e m ( z z ) 2 2 i ћ t ,
Ω μ z ( z , t ) = 1 | z | H 3 , 3 2 , 1 ћ t K z 2 ћ m i | z | μ z ( 1 , 1 ) , ( 1 , 1 2 ) , ( 1 , μ z 2 ) ( 1 , μ z ) , ( 1 , 1 ) , ( 1 , μ z 2 ) .
Note that the reduced Green functions for the x and z variables have mixing between two terms, one from the kinetic energy and another from the nonlocal term, which was introduced in the Schrödinger equation. This feature indicates that spreading the wave package governed by these Green functions may present different behaviors depending on the choice of the parameters in the nonlocal term. These Fox H-functions appear due to long range nonlocal effects geometrically constrained in the x O z -plane, represented by the δ ( y ) function in front of the nonlocal term, and are signature of anomalous dynamics in the system. Figure 2 illustrates the behavior of Equation (42) for different values of μ x for the real and imaginary parts to show the effect of the combination of different effects.
For the other kernel of form (14), performing a similar calculation by considering the reduced Green function is also possible. In particular, we have that
G R ( k x , y , k z , s ) = m 2 i ћ e s + i ћ k x z 2 2 m 2 m i ћ | y | s + i ћ k x z 2 2 m + i ћ K m 2 i ћ k x z 2 s + i ћ k x z 2 / ( 2 m ) γ ,
which yields,
G R , x ( x , t ) = d k x 2 π e i k x x E 1 2 γ i ћ K m 2 i ћ k x 2 t 1 2 γ e i ћ 2 m t k x 2 = m 2 π i ћ t d x Ω 2 , γ ( x , t ) e m ( x x ) 2 2 i ћ t ,
Ω 2 , γ ( x , t ) = 1 | x | H 1 , 1 1 , 0 ћ t 1 2 γ K 2 ћ m i | x | 2 ( 1 , 1 2 γ ) ( 1 , 2 ) ,
G R , y ( y , t ) = m 2 π i ћ t e m 2 i ћ t y 2 ,
and
G R , z ( z , t ) = d k z 2 π e i k z z E 1 2 γ i ћ K m 2 i ћ k z 2 t 1 2 γ e i ћ 2 m t k z 2 = m 2 π i ћ t d z Ω 2 , γ ( z , t ) e m ( z z ) 2 2 i ћ t ,
Ω 2 , γ ( z , t ) = 1 | z | H 1 , 1 1 , 0 ћ t 1 2 γ K 2 ћ m i | z | 2 ( 1 , 1 2 γ ) ( 1 , 2 ) .
Similarly to the analysis performed for the kernel with spatial dependence, the kernel affected only the directions x and z. In addition, the time dependence on the kernel in combination with the geometric constraint of the nonlocal effects in the x O z -plane introduce anomalous dynamics in the system, represented by the Fox H-functions in the solution. This point can be verified by the Mittag-Leffler function in the solutions, which presents an asymptotic behavior characterized by power laws for the relaxation process. It is clear from these results that for K = 0 the Green functions G R , x ( x , t ) and G R , z ( z , t ) reduce to those for a free particle.

4. Discussion and Conclusions

We investigated an analytically solvable model based on the Schrödinger equation in the presence of a nonlocal term, dependent on spatial and time coordinates. Along with nonlocality, the model also reflects anisotropy in a way that is suitable for describing correlations that take effect only in one plane, keeping the free-particle conditions outside of this plane. We employed the Green’s function method along with integral Fourier–Laplace transforms to derive closed-form solutions for the Green’s functions. Further, we considered different forms of the nonlocal kernel and analyzed their effects. It was shown that the nonlocal term influenced the system’s spreading behavior, varying based on the selected kernel. This point is evident in the first case when the spatial dependence of the kernel is considered. In this case, we consider the convolution between the solutions of Gaussian and Lévy types, as shown for the reduced distributions. In this manner, the kernel with a spatial dependence on Lévy solutions is asymptotically characterized by long-tailed behavior. This shows that two different behaviors govern the behavior of the wave package. Similar situations have been analyzed in a diffusion scenario [47,48,49], where different diffusive terms have been considered. We then considered the time dependence of the kernel, which can be linked to fractional derivatives in time within the framework of the Riemann–Liouville definition. This fractional operator introduces an anomalous relaxation in time, asymptotically governed by a power law with long-tailed behavior related to the asymptotic behavior of the Mittag–Leffler function. In this case, we have two behaviors, one connected to the exponential and another to the Mittag–Leffler function during the relaxation of the wave package.
In conclusion, we can say that the model proposed in this work provides a general simplified approach for a better understanding of the anomalous dynamics in layered two-dimensional nanomaterials, where the long-range interactions are dominant in one plane [50,51,52] and cannot be treated using the classical diffusion models. Memory effects in such complex low-dimensional materials also play a crucial role in predicting the system’s behavior. The results show that temporal nonlocality can likewise be addressed through an appropriate selection of the kernel within the same model. In our research, we extend previous generalizations of the Schrödinger equation by considering the nonlocality and anisotropy in the interparticle correlations. In the future, the model established in this work could be further extended to include interactions in additional planes perpendicular to the y-axis. This will mimic layered two-dimensional materials, which can be achieved by introducing another term with the Dirac delta function positioned elsewhere along the y-axis.

Author Contributions

Conceptualization, I.P., P.T., T.S., J.A.M.A.R., A.S.M.d.C. and E.K.L.; methodology, I.P., P.T., T.S., J.A.M.A.R., A.S.M.d.C. and E.K.L.; formal analysis, I.P., P.T., T.S., J.A.M.A.R., A.S.M.d.C. and E.K.L.; investigation, I.P., P.T., T.S., J.A.M.A.R., A.S.M.d.C. and E.K.L.; writing—original draft preparation, I.P., P.T., T.S., J.A.M.A.R., A.S.M.d.C. and E.K.L.; writing—review and editing, I.P., P.T., T.S., J.A.M.A.R., A.S.M.d.C. and E.K.L. All authors have read and agreed to the published version of the manuscript.

Funding

E.K.L. is thankful for the partial financial support of the CNPq under Grant No. 301715/2022- 0. J.A.M.A.R. acknowledges financial support from CAPES. I.P., P.T., and T.S. acknowledge financial support from the German Science Foundation (DFG, Grant number ME 1535/12-1), by the Alliance of International Science Organizations (Project No. ANSO-CR-PP-2022-05), and by the bilateral Macedonian-Austrian project No. 20-667/10 (WTZ MK03/2024). T.S. was also supported by the Alexander von Humboldt Foundation.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Schneider, W.R.; Wyss, W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30, 134–144. [Google Scholar] [CrossRef]
  2. Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
  3. Sokolov, I.M. Models of anomalous diffusion in crowded environments. Soft Matter 2012, 8, 9043–9052. [Google Scholar] [CrossRef]
  4. Chechkin, A.V.; Gorenflo, R.; Sokolov, I.M. Fractional Fokker-Planck equation for ultraslow anomalous diffusion. Phys. Rev. E 2002, 66, 046129. [Google Scholar] [CrossRef] [PubMed]
  5. Barkai, E. Fractional Fokker-Planck equation, solution, and application. Phys. Rev. E 2001, 63, 046118. [Google Scholar] [CrossRef]
  6. Gorenflo, R.; Mainardi, F.; Vivoli, A. Continuous-time random walk and parametric subordination in fractional diffusion. Chaos Solitons Fractals 2007, 34, 87–103. [Google Scholar] [CrossRef]
  7. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
  8. Gorenflo, R.; Mainardi, F. Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1998, 1, 167–191. [Google Scholar]
  9. Compte, A. Stochastic foundations of fractional dynamics. Phys. Rev. E 1996, 53, 4191. [Google Scholar] [CrossRef]
  10. Bazhlekova, E.; Bazhlekov, I. Subordination approach to space-time fractional diffusion. Mathematics 2019, 7, 415. [Google Scholar] [CrossRef]
  11. Sabzikar, F.; Meerschaert, M.M.; Chen, J. Tempered fractional calculus. J. Comput. Phys. 2015, 293, 14–28. [Google Scholar] [CrossRef] [PubMed]
  12. Tarasov, V.E. Generalized memory: Fractional calculus approach. Fractal Fract. 2018, 2, 23. [Google Scholar] [CrossRef]
  13. Tatom, F.B. The relationship between fractional calculus and fractals. Fractals 1995, 3, 217–229. [Google Scholar] [CrossRef]
  14. Magin, R. Fractional calculus in bioengineering, part 1. Crit. Rev. Biomed. Eng. 2004, 32. [Google Scholar] [CrossRef]
  15. Sibatov, R.T. Fractal generalization of the Scher–Montroll model for anomalous transit-time dispersion in disordered solids. Mathematics 2020, 8, 1991. [Google Scholar] [CrossRef]
  16. Iomin, A.; Méndez, V.; Horsthemke, W. Fractional Dynamics in Comb-like Structures; World Scientific: Singapore, 2018. [Google Scholar]
  17. Iomin, A.; Méndez, V.; Horsthemke, W. Comb model: Non-Markovian versus Markovian. Fractal Fract. 2019, 3, 54. [Google Scholar] [CrossRef]
  18. Iomin, A. Non-Markovian quantum mechanics on comb. Chaos Interdiscip. J. Nonlinear Sci. 2024, 34, 093135. [Google Scholar] [CrossRef]
  19. Petreska, I.; de Castro, A.S.M.; Sandev, T.; Lenzi, E.K. The time-dependent Schrödinger equation in three dimensions under geometric constraints. J. Math. Phys. 2019, 60, 032101. [Google Scholar] [CrossRef]
  20. Sokolov, I.M.; Klafter, J. From diffusion to anomalous diffusion: A century after Einstein’s Brownian motion. Chaos Interdiscip. J. Nonlinear Sci. 2005, 15, 026103. [Google Scholar] [CrossRef] [PubMed]
  21. Kochubei, A.N. General fractional calculus, evolution equations, and renewal processes. Integral Equ. Oper. Theory 2011, 71, 583–600. [Google Scholar] [CrossRef]
  22. Sandev, T.; Petreska, I.; Lenzi, E.K. Time-dependent Schrödinger-like equation with nonlocal term. J. Math. Phys. 2014, 55, 092105. [Google Scholar] [CrossRef]
  23. Luchko, Y.; Yamamoto, M. The general fractional derivative and related fractional differential equations. Mathematics 2020, 8, 2115. [Google Scholar] [CrossRef]
  24. Luchko, Y. Fractional differential equations with the general fractional derivatives of arbitrary order in the Riemann–Liouville sense. Mathematics 2022, 10, 849. [Google Scholar] [CrossRef]
  25. Laskin, N. Fractional Quantum Mechanics; World Scientific Publishing Company: Singapore, 2018. [Google Scholar]
  26. Laskin, N. Fractional Schrödinger equation. Phys. Rev. E 2002, 66, 056108. [Google Scholar] [CrossRef] [PubMed]
  27. Luchko, Y. Fractional Schrödinger equation for a particle moving in a potential well. J. Math. Phys. 2013, 54. [Google Scholar] [CrossRef]
  28. Liemert, A.; Kienle, A. Fractional Schrödinger equation in the presence of the linear potential. Mathematics 2016, 4, 31. [Google Scholar] [CrossRef]
  29. Sibatov, R.T.; Sun, H. Tempered fractional equations for quantum transport in mesoscopic one-dimensional systems with fractal disorder. Fractal Fract. 2019, 3, 47. [Google Scholar] [CrossRef]
  30. Liu, S.; Xu, X.; Xie, R.; Zhang, G.; Li, B. Anomalous heat conduction and anomalous diffusion in low dimensional nanoscale systems. Eur. Phys. J. B 2012, 85, 337. [Google Scholar] [CrossRef]
  31. Livi, R. Anomalous transport in low-dimensional systems: A pedagogical overview. Phys. A Stat. Mech. Its Appl. 2023, 631, 127779. [Google Scholar] [CrossRef]
  32. Afek, G.; Davidson, N.; Kessler, D.A.; Barkai, E. Colloquium: Anomalous statistics of laser-cooled atoms in dissipative optical lattices. Rev. Mod. Phys. 2023, 95, 031003. [Google Scholar] [CrossRef]
  33. Marcuzzi, M.; Levi, E.; Li, W.; Garrahan, J.P.; Olmos, B.; Lesanovsky, I. Non-equilibrium universality in the dynamics of dissipative cold atomic gases. New J. Phys. 2015, 17, 072003. [Google Scholar] [CrossRef]
  34. Ponomarev, A.V.; Denisov, S.; Hänggi, P. Lévy distribution in many-particle quantum systems. Phys. Rev. A—At. Mol. Opt. Phys. 2010, 81, 043615. [Google Scholar] [CrossRef]
  35. Lenzi, E.K.; de Oliveira, B.F.; da Silva, L.R.; Evangelista, L.R. Solutions for a Schrödinger equation with a nonlocal term. J. Math. Phys. 2008, 49, 032108. [Google Scholar] [CrossRef]
  36. Lenzi, E.K.; Evangelista, L.R.; Zola, R.S.; Petreska, I.; Sandev, T. Fractional Schrödinger equation and anomalous relaxation: Nonlocal terms and delta potentials. Mod. Phys. Lett. A 2021, 36, 2140004. [Google Scholar] [CrossRef]
  37. Wang, L.; Jin, F.F. Boundary output feedback stabilization of the linearized Schrödinger equation with nonlocal term. Int. J. Control. Autom. Syst. 2021, 19, 1528–1538. [Google Scholar] [CrossRef]
  38. Jiang, X.; Qi, H.; Xu, M. Exact solutions of fractional Schrödinger-like equation with a nonlocal term. J. Math. Phys. 2011, 52, 042105. [Google Scholar] [CrossRef]
  39. Jeng, M.; Xu, S.L.Y.; Hawkins, E.; Schwarz, J. On the nonlocality of the fractional Schrödinger equation. J. Math. Phys. 2010, 51, 062102. [Google Scholar] [CrossRef]
  40. Modanese, G. Time in quantum mechanics and the local non-conservation of the probability current. Mathematics 2018, 6, 155. [Google Scholar] [CrossRef]
  41. Petreska, I.; Sandev, T.; Lenzi, E.K. Comb-like geometric constraints leading to emergence of the time-fractional Schrödinger equation. Mod. Phys. Lett. A 2021, 36, 2130005. [Google Scholar] [CrossRef]
  42. Duffy, D. Green’s Functions with Applications; Applied Mathematics; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
  43. Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-function: Theory and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
  44. Mathai, A.; Haubold, H.J. Mittag-Leffler Functions and Fractional Calculus; Springer: Berlin/Heidelberg, Germany, 2008; pp. 79–134. [Google Scholar]
  45. Uchaikin, V.V.; Sibatov, R.T. Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystems; World Scientific: Singapore, 2012. [Google Scholar]
  46. Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
  47. Wang, W.; Barkai, E. Fractional advection diffusion asymmetry equation, derivation, solution and application. J. Phys. A Math. Theor. 2024, 57, 035203. [Google Scholar] [CrossRef]
  48. Jiang, D.; Hong, Y.; Wang, W. Simulation of the continuous time random walk using subordination schemes. Phys. Rev. E 2024, 110, 034113. [Google Scholar] [CrossRef] [PubMed]
  49. Suleiman, K.; Zhang, X.; Wang, E.; Liu, S.; Zheng, L. Anomalous diffusion in branched elliptical structure. Chin. Phys. B 2023, 32, 010202. [Google Scholar] [CrossRef]
  50. Carvalho, A.; Trevisanutto, P.E.; Taioli, S.; Neto, A.C. Computational methods for 2D materials modelling. Rep. Prog. Phys. 2021, 84, 106501. [Google Scholar] [CrossRef] [PubMed]
  51. Rudenko, A.N.; Katsnelson, M.I. Anisotropic effects in two-dimensional materials. 2D Mater. 2024, 11, 042002. [Google Scholar] [CrossRef]
  52. Shen, H.; Chen, L.; Ferrari, L.; Lin, M.H.; Mortensen, N.A.; Gwo, S.; Liu, Z. Optical observation of plasmonic nonlocal effects in a 2D superlattice of ultrasmall gold nanoparticles. Nano Lett. 2017, 17, 2234–2239. [Google Scholar] [CrossRef] [PubMed]
Figure 1. This figure shows | ψ ( x , y , z , t ) | for the the wave function obtained from initial condition ψ ( x , y , z , 0 ) = δ ( x ) δ ( y ) δ ( z ) with the Green function given by Equation (18). We consider, for simplicity, ћ / m = 1 , μ x = μ z = 2 , t = 1 , K x = 1 , and K z = 1 , in arbitrary units.
Figure 1. This figure shows | ψ ( x , y , z , t ) | for the the wave function obtained from initial condition ψ ( x , y , z , 0 ) = δ ( x ) δ ( y ) δ ( z ) with the Green function given by Equation (18). We consider, for simplicity, ћ / m = 1 , μ x = μ z = 2 , t = 1 , K x = 1 , and K z = 1 , in arbitrary units.
Mathematics 13 00137 g001
Figure 2. This figure shows the real and imaginary part of the reduced green function G R , x ( x , t ) for different values of μ x . We consider, for simplicity, ћ / m = 1 , t = 1 , and K x = 1 , in arbitrary unities.
Figure 2. This figure shows the real and imaginary part of the reduced green function G R , x ( x , t ) for different values of μ x . We consider, for simplicity, ћ / m = 1 , t = 1 , and K x = 1 , in arbitrary unities.
Mathematics 13 00137 g002aMathematics 13 00137 g002b
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Petreska, I.; Trajanovski, P.; Sandev, T.; Rocha, J.A.M.A.; de Castro, A.S.M.; Lenzi, E.K. Solutions to the Schrödinger Equation: Nonlocal Terms and Geometric Constraints. Mathematics 2025, 13, 137. https://doi.org/10.3390/math13010137

AMA Style

Petreska I, Trajanovski P, Sandev T, Rocha JAMA, de Castro ASM, Lenzi EK. Solutions to the Schrödinger Equation: Nonlocal Terms and Geometric Constraints. Mathematics. 2025; 13(1):137. https://doi.org/10.3390/math13010137

Chicago/Turabian Style

Petreska, Irina, Pece Trajanovski, Trifce Sandev, Jonathan A. M. Almeida Rocha, Antonio Sérgio Magalhães de Castro, and Ervin K. Lenzi. 2025. "Solutions to the Schrödinger Equation: Nonlocal Terms and Geometric Constraints" Mathematics 13, no. 1: 137. https://doi.org/10.3390/math13010137

APA Style

Petreska, I., Trajanovski, P., Sandev, T., Rocha, J. A. M. A., de Castro, A. S. M., & Lenzi, E. K. (2025). Solutions to the Schrödinger Equation: Nonlocal Terms and Geometric Constraints. Mathematics, 13(1), 137. https://doi.org/10.3390/math13010137

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop