Initial Coefficient Bounds Analysis for Novel Subclasses of Bi-Univalent Functions Linked with Lucas-Balancing Polynomials
Abstract
:1. Introduction
2. Main Results
3. Special Cases of Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA, 1983. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.G. Aspects of contemporary complex analysis. In Proceedings of the NATO Advanced Study Institute Held at University of Durhary, Newyork; Academic Press: Cambridge, MA, USA, 1979. [Google Scholar]
- Tan, D.L. Coefficient estimates for bi-univalent functions. Chin. Ann. Math. Ser. A 1984, 5, 559–568. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Stud. Univ. Babes-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [Google Scholar] [CrossRef]
- Frasin, B.A. Coefficient bounds for certain classes of bi-univalent functions. Hacet. J. Math. Stat. 2014, 43, 383–389. [Google Scholar] [CrossRef]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. 2011, 24, 1569–1573. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Tang, H.; Deng, G.; Li, S. Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions. J. Ineq. Appl. 2013, 2013, 317. [Google Scholar] [CrossRef]
- Orhan, H.; Mamatha, P.K.; Swamy, S.R.; Magesh, N.; Yamini, J. Certain classes of bi-univalent functions associated with the Horadam polynomials. Acta Univ. Sapieniae Math. 2021, 13, 258–272. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Altınkaya, Ş.; Yalçın, S. Certain Subclasses of bi-univalent functions associated with the Horadam polynomials. Iran J. Sci. Technol. Trans. Sci. 2019, 43, 1873–1879. [Google Scholar] [CrossRef]
- Swamy, S.R.; Yalçin, S. Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials. Prbl. Anal. Issues Anal. 2022, 11, 133–144. [Google Scholar] [CrossRef]
- Wanas, A.K.; Cotîrlă, L.I. Applications of (M,N)-Lucas Polynomials on a certian family of bi-univalent functions. Mathematics 2022, 10, 595. [Google Scholar] [CrossRef]
- Behera, A.; Panda, G.K. On the sequence of roots of triangular numbers. Fibonacci Quart. 1999, 37, 98–105. [Google Scholar]
- Davala, R.K.; Panda, G.K. On sum and ratio formulas for balancing numbers. J. Ind. Math. Soc. 2015, 82, 23–32. [Google Scholar]
- Frontczak, R. On Balancing polynomials. Appl. Math. Sci. 2019, 13, 57–66. [Google Scholar] [CrossRef]
- Panda, C.K.; Komatsu, T.; Davala, R.K. Reciprocal sums of sequences involving balancing and Lucas-balancing numbers. Math. Rep. 2018, 20, 201–214. [Google Scholar]
- Frontczak, R.; Baden-Württemberg, L. A note on hybrid convolutions involving balancing and Lucas-Balancing numbers. Appl. Math. Sci. 2018, 12, 2001–2008. [Google Scholar] [CrossRef]
- Frontczak, R.; Baden-Württemberg, L. Sums of Balancing and Lucas-Balancing numbers with binomial coefficients. Int. J. Math. Anal. 2018, 12, 585–594. [Google Scholar] [CrossRef]
- Ray, P.K. Balancing and Lucas-Balancing sums by matrix method. Math. Rep. 2015, 17, 225–233. [Google Scholar]
- Ray, P.K. Certain matrices associated with balancing and Lucas-balancing numbers. Matematika 2012, 28, 15–22. [Google Scholar]
- Patel, B.K.; Irmak, N.; Ray, P.K. Incomplete balancing and Lucas-balancing numbers. Math. Rep. 2018, 20, 59–72. [Google Scholar]
- Berczes, A.; Liptai, K.; Pink, I. On generalized balancing sequences. Fibonacci Quart. 2020, 48, 121–128. [Google Scholar]
- Liptai, K.; Luca, F.; Pintér, Á.; Szalay, L. Generalized balancing numbers. Ind. Math. 2009, 20, 87–100. [Google Scholar] [CrossRef]
- Ray, P.K.; Sahu, J. Generating functions for certain Balancing and Lucas-Balancing numbers. Palest. J. Math. 2016, 5, 122–129. [Google Scholar]
- Fekete, M.; Szegö, G. Eine Bemerkung über ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 89, 85–89. [Google Scholar] [CrossRef]
- Hussen, A.; Illafe, M. Coefficient bounds for a certain subclasses of bi-univalent functions associated with Lucas-Balancing Polynomials. Mathematics 2023, 11, 4941. [Google Scholar] [CrossRef]
- Khan, N.; Shafiq, M.; Darus, M.; Khan, B.; Ahmed, Q.Z. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with Lemniscate of Bernoulli. J. Math. Inequal. 2020, 14, 51–63. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, M.; Ahmed, Q.Z.; Khan, N. Applications of a certain q- integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 2020, 6, 1024–1039. [Google Scholar] [CrossRef]
- Shafiq, M.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Darus, M.; Khan, S. An upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with k-Fibonacci numbers. Symmetry 2020, 12, 1043. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, S.; Ahmad, Q.Z.; Khan, N.; Hussain, S. The Faber polynomial expansion method and its applications to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator. Stud. Univ. Babes-Bolyai Math. 2018, 63, 419–436. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mostafa, A.O.; Aouf, M.K.; Zayed, H.M. Basic and fractional q-calculus and associated Fekete Szegö type problem for p-valently q-starlike functions and p-valently q-convex functions of complex order. Miskloc Math. Notes 2019, 20, 489–509. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometricfunction theory of complex analysis. Iran J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Wanas, A.K.; Srivastava, R. Applications of the q-Srivastava-Attiya operator involving a family of bi-univalent functions associated with Horadam polynomials. Symmetry 2021, 13, 1230. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swamy, S.R.; Breaz, D.; Venugopal, K.; Kempegowda, M.P.; Cotîrlă, L.-I.; Rapeanu, E. Initial Coefficient Bounds Analysis for Novel Subclasses of Bi-Univalent Functions Linked with Lucas-Balancing Polynomials. Mathematics 2024, 12, 1325. https://doi.org/10.3390/math12091325
Swamy SR, Breaz D, Venugopal K, Kempegowda MP, Cotîrlă L-I, Rapeanu E. Initial Coefficient Bounds Analysis for Novel Subclasses of Bi-Univalent Functions Linked with Lucas-Balancing Polynomials. Mathematics. 2024; 12(9):1325. https://doi.org/10.3390/math12091325
Chicago/Turabian StyleSwamy, Sondekola Rudra, Daniel Breaz, Kala Venugopal, Mamatha Paduvalapattana Kempegowda, Luminita-Ioana Cotîrlă, and Eleonora Rapeanu. 2024. "Initial Coefficient Bounds Analysis for Novel Subclasses of Bi-Univalent Functions Linked with Lucas-Balancing Polynomials" Mathematics 12, no. 9: 1325. https://doi.org/10.3390/math12091325
APA StyleSwamy, S. R., Breaz, D., Venugopal, K., Kempegowda, M. P., Cotîrlă, L.-I., & Rapeanu, E. (2024). Initial Coefficient Bounds Analysis for Novel Subclasses of Bi-Univalent Functions Linked with Lucas-Balancing Polynomials. Mathematics, 12(9), 1325. https://doi.org/10.3390/math12091325