Bridging the p-Special Functions between the Generalized Hyperbolic and Trigonometric Families
Abstract
:1. Introduction
2. The -Trigonometric Functions with Generalized Complex Variables
3. The -Hyperbolic Functions with Generalized Hyperbolic Complex Variables
4. The -Complex Logarithmic Functions and -Complex Powers of Generalized Complex Numbers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harkin, A.A.; Harkin, J.B. Geometry of generalized complex numbers. Math. Mag. 2004, 77, 118–129. [Google Scholar] [CrossRef]
- Yaglom, I.M. Complex Numbers in Geometry; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Özen, K.E.; Tosun, M. p-Trigonometric approach to elliptic biquaternions. Adv. Appl. Clifford Algebr. 2018, 28, 62. [Google Scholar] [CrossRef]
- Özen, K.E.; Tosun, M. Elliptic matrix representations of elliptic biquaternions and their applications. Int. Electron. J. Geom. 2018, 11, 96–103. [Google Scholar] [CrossRef]
- Erişir, T.; Güngör, M.A.; Tosun, M. The Holditch-type theorem for the polar moment of inertia of the orbit curve in the generalized complex plane. Adv. Appl. Clifford Algebr. 2016, 26, 1179–1193. [Google Scholar] [CrossRef]
- Erişir, T.; Güngör, M.A. Holditch-Type Theorem for Non-Linear Points in Generalized Complex Plane Cp. Univers. J. Math. Appl. 2018, 1, 239–243. [Google Scholar] [CrossRef]
- Gürses, N.; Yüce, S. One-parameter planar motions in generalized complex number plane CJ. Adv. Appl. Clifford Algebr. 2015, 25, 889–903. [Google Scholar] [CrossRef]
- Eren, K.; Ersoy, S. Burmester theory in Cayley–Klein planes with affine base. J. Geom. 2018, 109, 1–12. [Google Scholar] [CrossRef]
- Catoni, F. Unification of Two Dimensional Special and General Relativity by Means of Hypercomplex Numbers; Technical Report, SCAN-9601316; ENEA: Rome, Italy, 1995. [Google Scholar]
- Catoni, F.; Boccaletti, D.; Cannata, R.; Catoni, V.; Nichelatti, E.; Zampetti, P. The Mathematics of Minkowski Space-Time: With an Introduction to Commutative Hypercomplex Numbers; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Catoni, F.; Cannata, R.; Catoni, V.; Zampetti, P. N-dimensional geometries generated by hypercomplex numbers. Adv. Appl. Clifford Algebr. 2005, 15, 1–25. [Google Scholar] [CrossRef]
- Catoni, F.; Cannata, R.; Catoni, V.; Zampetti, P. Two-dimensional hypercomplex numbers and related trigonometries and geometries. Adv. Appl. Clifford Algebr. 2004, 14, 47–68. [Google Scholar] [CrossRef]
- Catoni, F.; Cannata, R.; Nichelatti, E.; Zampetti, P. Commutative hypercomplex numbers and functions of hypercomplex variable: A matrix study. Adv. Appl. Clifford Algebr. 2005, 15, 183–212. [Google Scholar] [CrossRef]
- Özen, K.E. On the trigonometric and p-trigonometric functions of elliptical complex variables. Commun. Adv. Math. Sci. 2020, 3, 143–154. [Google Scholar] [CrossRef]
- Chappell, J.M.; Iqbal, A.; Gunn, L.J.; Abbott, D. Functions of multivector variables. PLoS ONE 2015, 10, e0116943. [Google Scholar] [CrossRef] [PubMed]
- Richter, W.D. On hyperbolic complex numbers. Appl. Sci. 2022, 12, 5844. [Google Scholar] [CrossRef]
- Riley, K.F.; Hobson, M.P.; Bence, S.J. Mathematical Methods for Physics and Engineering: A Comprehensive Guide; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Aprahamian, M.; Higham, N.J. Matrix inverse trigonometric and inverse hyperbolic functions: Theory and algorithms. SIAM J. Matrix Anal. Appl. 2016, 37, 1453–1477. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alibrahim, A.H.; Das, S. Bridging the p-Special Functions between the Generalized Hyperbolic and Trigonometric Families. Mathematics 2024, 12, 1242. https://doi.org/10.3390/math12081242
Alibrahim AH, Das S. Bridging the p-Special Functions between the Generalized Hyperbolic and Trigonometric Families. Mathematics. 2024; 12(8):1242. https://doi.org/10.3390/math12081242
Chicago/Turabian StyleAlibrahim, Ali Hamzah, and Saptarshi Das. 2024. "Bridging the p-Special Functions between the Generalized Hyperbolic and Trigonometric Families" Mathematics 12, no. 8: 1242. https://doi.org/10.3390/math12081242