Boundedness of Solutions for an Attraction–Repulsion Model with Indirect Signal Production
Abstract
:1. Introduction
2. Preliminaries
3. A Prior Estimate
4. Boundedness of Radial Solutions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Keller, E.F.; Segel, L.A. Initiation of slime model aggregation viewed as an instability. J. Theoret. Biol. 1970, 26, 399–415. [Google Scholar] [CrossRef]
- Gajewski, H.; Zacharias, K. Global behavior of a reaction-diffusion system modelling chemotaxis. Math. Nachr. 1998, 195, 77–114. [Google Scholar] [CrossRef]
- Li, X. Global classical solutions in a Keller-Segel(-Navier)-Stokes system modeling coral fertilization. J. Differ. Equ. 2019, 267, 6290–6315. [Google Scholar] [CrossRef]
- Nagai, T.; Senba, T.; Yoshida, K. Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkcial Ekvac. Ser. Int. 1997, 40, 411–433. [Google Scholar]
- Nagai, T.; Yamada, T. Boundedness of solutions to the Cauchy problem for an attraction-repulsion chemotaxis system in two-dimensional space. Rend. Istit. Mat. Univ. Trieste 2020, 52, 131–149. [Google Scholar]
- Shi, R.; Wang, W. Well-posedness for a model derived from an attraction-repulsion chemotaxis system. J. Math. Anal. Appl. 2015, 423, 497–520. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, X. Global classical solutions of a 3D chemotaxis-Stokes system with rotation. Discret. Contin. Dyn. Syst. B 2015, 20, 3235–3254. [Google Scholar]
- Wang, Y.; Winkler, M.; Xiang, Z. Global classical solutions in a two-dimensional chemotaxis Navier-Stokes system with subcritical sensitivity. Ann. Sc. Norm. Super. Pisa CI. Sci. 2018, 18, 421–466. [Google Scholar] [CrossRef]
- Wang, Y.; Winkler, M.; Xiang, Z. Global mass-preserving solutions to a chemotaxis-fluid model involving Dirichlet boundary conditions for the signal. Anal. Appl. 2022, 20, 141–170. [Google Scholar] [CrossRef]
- Wang, Y.; Winkler, M.; Xiang, Z. Global solvability in a three-dimensional Keller-Segel-Stokes system involving arbitrary superlinear logistic degradation. Adv. Nonlinear Anal. 2021, 10, 707–731. [Google Scholar] [CrossRef]
- Wang, Y.; Winkler, M.; Xiang, Z. Immediate regularization of measure-type population densities in a two-dimensional chemotaxis system with signal consumption. Sci. China Math. 2021, 64, 725–746. [Google Scholar] [CrossRef]
- Wang, Y.; Winkler, M.; Xiang, Z. Local energy estimates and global solvability in a three-dimensional chemotaxis-fluid system with prescribed signal on the boundary. Commun. Partial Differ. Equ. 2021, 46, 1058–1091. [Google Scholar] [CrossRef]
- Wang, Y.; Xiang, Z. Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 2015, 259, 7578–7609. [Google Scholar] [CrossRef]
- Winkler, M. Global large-data solutions in a chemotaxis-(Navier-) Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 2012, 37, 319–351. [Google Scholar] [CrossRef]
- Winkler, M. Global mass-preserving solutions in a two-dimensional chemotaxis-Stokes system with rotation flux components. J. Evol. Equ. 2018, 18, 1267–1289. [Google Scholar] [CrossRef]
- Winkler, M. Global solutions in a fully parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci. 2011, 34, 176–190. [Google Scholar] [CrossRef]
- Winkler, M. Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system. Ann. Inst. H. Poincaré Anal. Non Linéaire 2016, 33, 1329–1352. [Google Scholar] [CrossRef]
- Winkler, M. Stabilization in a two-dimensional chemotaxis-Navier-Stokes system. Arch. Ration. Mech. Anal. 2014, 211, 455–487. [Google Scholar] [CrossRef]
- Wu, J.; Lin, H. The rates of convergence for the chemotaxis-Navier-Stokes equations in a strip domain. Appl. Anal. 2022, 101, 952–969. [Google Scholar] [CrossRef]
- Wu, J.; Wu, C. A note on the global existence of a two-dimensional chemotaxis-Navier-Stokes system. Appl. Anal. 2019, 98, 1224–1235. [Google Scholar] [CrossRef]
- Yu, P. Blow up prevention by saturated chemotaxis sensitivity in a 2D Keller-Segel-Stokes system. Acta Appl. Math. 2020, 169, 475–497. [Google Scholar] [CrossRef]
- Zheng, J. A new result for the global existence (and boundedness) and regularity of a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization. J. Differ. Equ. 2021, 272, 164–202. [Google Scholar] [CrossRef]
- Zheng, J. An optimal result for global existence and boundedness in a three-dimensional Keller-Segel-Stokes system with nonlinear diffusion. J. Differ. Equ. 2019, 267, 2385–2415. [Google Scholar] [CrossRef]
- Zheng, J. Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source. J. Differ. Equ. 2015, 259, 120–140. [Google Scholar] [CrossRef]
- Wu, J.; Yang, Z. Global existence and boundedness of chemotaxis-fluid equations to the coupled Solow-Swan model. AIMS Math. 2023, 8, 17914–17942. [Google Scholar] [CrossRef]
- Nagai, T.; Syukuinn, R.; Umesako, M. Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in Rn. Funkcial. Ekvac. 2003, 46, 383–407. [Google Scholar] [CrossRef]
- Nagai, T.; Yamada, T. Large time behavior of bounded solutions to a parabolic system of chemotaxis in the whole space. J. Math. Anal. Appl. 2007, 336, 704–726. [Google Scholar] [CrossRef]
- Winkler, M. A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization. J. Func. Anal. 2019, 276, 1339–1401. [Google Scholar] [CrossRef]
- Wu, J.; Natal, H. Boundedness and asymptotic behavior to a chemotaxis-fluid system with singular sensitivity and logistic source. J. Math. Anal. Appl. 2020, 484, 123748. [Google Scholar] [CrossRef]
- Childress, S.; Percus, J.K. Nonlinear aspects of chemotaxis. Math. Biosci. 1981, 56, 217–237. [Google Scholar] [CrossRef]
- Horstmann, D.; Wang, G. Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 2001, 12, 159–177. [Google Scholar] [CrossRef]
- Nagai, T. Behavior of solutions to a parabolic-elliptic system modeling chemotaxis. J. Korean Math. Soc. 2000, 37, 721–733. [Google Scholar]
- Nagai, T. Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 1995, 5, 581–601. [Google Scholar]
- Nagai, T. Blow-up of nonradial solutions to parabolic-elliptic system modeling chemotaxis in two-dimensional domains. J. Inequal. Appl. 2001, 6, 37–55. [Google Scholar]
- Senba, T.; Suzuki, T. Parabolic system of chemotaxis: Blowup in a finite and infinite time. Methods Appl. Anal 2001, 8, 349–367. [Google Scholar] [CrossRef]
- Winkler, M. Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equ. 2010, 248, 2889–2905. [Google Scholar] [CrossRef]
- Gates, M.; Coupe, V.; Torrws, E.; Fricker-Gares, R.; Dunnett, S. Spatially and temporally restricted chemoattractive and chemorepulsive cues direct the formation of the nigro-striatal circuit. Eur. J. Neurosci. 2004, 19, 831–844. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Z. Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension. J. Biol. Dyn. 2012, 6, 31–41. [Google Scholar] [CrossRef]
- Painter, K.J.; Hillen, T. Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 2002, 10, 501–543. [Google Scholar]
- Yang, X.; Dormann, D.; Monsterberg, A.; Weijer, C. Cell movement patterns during gastrulation in the chick are controlled by positive and negative chemotaxis mediated by FGF4 and FGF8. Dev. Cell 2002, 3, 425–437. [Google Scholar] [CrossRef]
- Jin, C. Global solvability and boundedness to a coupled chemotaxis-fluid model with arbitrary porous medium diffusion. J. Differ. Equ. 2017, 263, 6284–6316. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y. Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion. J. Differ. Equ. 2015, 259, 3730–3754. [Google Scholar] [CrossRef]
- Dai, F.; Liu, B. Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with indirect signal production. J. Differ. Equ. 2022, 333, 436–488. [Google Scholar] [CrossRef]
- Hu, B.; Tao, Y. To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production. Math. Models Methods Appl. Sci. 2016, 26, 2111–2128. [Google Scholar] [CrossRef]
- Zhang, W.; Niu, P.; Liu, S. Large time behavior in a chemotaxis model with logistic growth and indirect signal production. Nonlinear Anal. Real Word Appl. 2019, 50, 484–497. [Google Scholar] [CrossRef]
- Zhao, X.; Zheng, S. Global boundedness of solutions in a parabolic-parabolic chemotaxis system with singular sensitivity. J. Math. Anal. Appl. 2016, 443, 445–452. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L. Boundedness in a chemotaxis-fluid system involving a saturated sensitivity and indirect signal production mechanism. J. Differ. Equ. 2021, 287, 460–490. [Google Scholar] [CrossRef]
- Luca, M.; Chavez-Ross, A.; Edelstein-Keshet, L.; Mogilner, A. Chemotactic singalling, microglia, and alzheimer’s disease senile plaques: Is there a connection? Bull. Math. Biol. 2003, 65, 673–730. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Winkler, M.; Xiang, Z. The fast signal diffusion limit in Keller-Segel(-fluid) systems. Calc. Var. Partial Differ. Equ. 2019, 58, 196. [Google Scholar] [CrossRef]
- Jin, H.; Liu, Z. Large time behavior of the full attraction-repulsion Keller-Segel system in the whole space. Appl. Math. Lett. 2015, 47, 13–20. [Google Scholar] [CrossRef]
- Henry, D. Geometric Theory of Semi-linear Parabolic Equations; Lecture Notes in Mathematics; Springer: Berlin, Germany; New York, NY, USA, 1981; Volume 840. [Google Scholar]
- Stein, E.M. Singular Integrals and Differentiability Properties of Functions; Princeton Math. Ser.; Princeton University Press: Princeton, NJ, USA, 1970; Volume 30. [Google Scholar]
- Nagai, T.; Ogawa, T. Brezis-Merle inequalities and application to the global existence of the Cauchy problem of the Keller-Segel system. Commun. Contemp. Math. 2011, 13, 795–812. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Huang, Y. Boundedness of Solutions for an Attraction–Repulsion Model with Indirect Signal Production. Mathematics 2024, 12, 1143. https://doi.org/10.3390/math12081143
Wu J, Huang Y. Boundedness of Solutions for an Attraction–Repulsion Model with Indirect Signal Production. Mathematics. 2024; 12(8):1143. https://doi.org/10.3390/math12081143
Chicago/Turabian StyleWu, Jie, and Yujie Huang. 2024. "Boundedness of Solutions for an Attraction–Repulsion Model with Indirect Signal Production" Mathematics 12, no. 8: 1143. https://doi.org/10.3390/math12081143
APA StyleWu, J., & Huang, Y. (2024). Boundedness of Solutions for an Attraction–Repulsion Model with Indirect Signal Production. Mathematics, 12(8), 1143. https://doi.org/10.3390/math12081143