Global Solution and Stability of a Haptotaxis Mathematical Model for Complex MAP
Abstract
:1. Introduction
2. Results
2.1. Global Solution of System (3)
2.1.1. Local Existence
2.1.2. A Priori Estimates
2.2. Stability
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Katz, D.; Dunmire, E. Cervical mucus: Problems and opportunities for drug delivery via the vagina and cerivc. Adv. Drug Deliv. Rev. 1993, 11, 385–401. [Google Scholar] [CrossRef]
- Lai, S.; Wang, Y.; Wirtz, D.; Hanes, J. Micro and macrorheology of mucus. Adv. Drug Deliv. Rev. 2009, 61, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Lieleg, O.; Ribbeck, K. Biological hydrogels as selective diffusion barriers. Trends Cell Biol. 2011, 21, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Olmsted, S.S.; Padgett, J.L.; Yudin, A.I.; Whaley, K.J.; Moench, T.R.; Cone, R.A. Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys. J. 2001, 81, 1930–1937. [Google Scholar] [CrossRef]
- Saltzman, W.M.; Radomsky, M.L.; Whaley, K.J.; Cone, R.A. Antibody diffusion in human cervical mucus. Biophys. J. 1994, 66, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Y.; Kannan, A.; Nunn, K.L.; Murphy, M.A.; Subramani, D.B.; Moench, T.; Cone, R.; Lai, S.K. IgG in cervicovaginal mucus traps HSV and prevents vaginal herpes infections. Mucosal Immunol. 2014, 7, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Wessler, T.; Chen, A.; McKinley, S.A.; Cone, R.; Forest, M.G.; Lai, S.K. Using computational modeling to optimize the design of antibodies that trap viruses in mucus. ACS Infect. Dis. 2016, 2, 82–92. [Google Scholar] [CrossRef]
- Newby, J.; Schiller, J.L.; Wessler, T.; Edelstein, J.; Forest, M.G.; Lai, S.K. A blueprint for robust crosslinking of mobile species in biogels with weakly adhesive molecular anchors. Nat. Commun. 2017, 8, 833. [Google Scholar] [CrossRef] [PubMed]
- Smoluchowski, M. Drei vorträge über diffusion, brownsche molekularbewegung und koagulation von kolloidteilchen. Physik. Z. 1916, 17, 557–585. [Google Scholar]
- Kaler, L.; Iverson, E.; Bader, S.; Song, D.; Scull, M.; Duncan, G.A. Influenza A virus diffusion through mucus gel networks. Commun. Biol. 2022, 5, 249. [Google Scholar] [CrossRef]
- Cornick, S.; Tawiah, A.; Chadee, K. Roles and regulation of the mucus barrier in the gut. Tissue Barriers 2015, 3, e982426. [Google Scholar] [CrossRef] [PubMed]
- Hansson, G.C. Role of mucus layers in gut infection and inflammation. Curr. Opin. Microbiol. 2012, 15, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Mathias, A.; Pais, B.; Favre, L.; Benyacoub, J.; Corthésy, B. Role of secretory IgA in the mucosal sensing of commensal bacteria. Gut Microbes 2014, 976, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Safaeian, M.; Kemp, T.; Rodriguez, C.A.; Hildesheim, A.; Falk, R.T. Determinants and correlation of systemic and cervical concentrations of total IgA and IgG. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2672–2676. [Google Scholar] [CrossRef] [PubMed]
- Sicard, J.F.; Bihan, G.L.; Vogeleer, P.; Jacques, M.; Harel, J. Interactions of intestinal bacteria with components of the intestinal mucus. Front. Cell Infect. Microbiol. 2017, 387, 2235–2288. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.B. Principles of cell motility: The direction of cell movement and cancer invasion. Nature 1965, 2008, 1183–1187. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.B. Haptotaxis and the mechanism of cell motility. Nature 1967, 213, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Curtis, A.S.G. The measurement of cell adhesiveness by an absolute method. J. Embryol. Exp. Morphol. 1969, 22, 305–325. [Google Scholar] [CrossRef] [PubMed]
- Chaplai, M.A.J.; Lolas, G. Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system Math. Models Methods Appl. Sci. 2005, 18, 1685–1734. [Google Scholar] [CrossRef]
- Chaplai, M.A.J.; Lolas, G. Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity. Netw. Heterog. Media 2006, 1, 399–439. [Google Scholar] [CrossRef]
- KjØller, L. The urokinase plasminogen activator receptor in the regulation of the actin cytoskeleton and cell motility. Biol. Chem. 2002, 383, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Plesner, T.; Behrendt, N.; Ploug, M. Structure, function and expression on blood and bone marrow cells of the urokinase-type plasminogen activator receptor. uPAR STEM Cells 1997, 15, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.H.; Wang, Y. Global boundedness of solutions to a chemotaxis-haptotaxis model with tissue remodeling. Math. Model. Methods Appl. Sci. 2018, 28, 2211–2235. [Google Scholar] [CrossRef]
- Stinner, C.; Surulescu, C.; Winkler, M. Global weak solutions in a PDE-ode system modeling multiscale cancer cell invasion. SIAM J. Math. Anal. 2014, 46, 1969–2007. [Google Scholar] [CrossRef]
- Tao, Y.; Winkler, M. Dominance of chemotaxis in a chemotaxis-haptotaxis model. Nonlinearity 2014, 27, 1225–1239. [Google Scholar] [CrossRef]
- Tao, Y.; Winkler, M. Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant. J. Differ. Equ. 2014, 257, 784–815. [Google Scholar] [CrossRef]
- Tao, Y.; Winkler, M. A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundednessen forced by mild saturation of signal production. Commun. Pure Appl. Anal. 2019, 18, 2047–2067. [Google Scholar] [CrossRef]
- Walker, C.; Webb, G.F. Globale xistence of classical solutions for a haptotaxis model. SIAM J. Math. Anal. 2007, 38, 1694–1713. [Google Scholar] [CrossRef]
- Winkler, M.; Surulescu, C. A global weak solutions to a strongly degenerate haptotaxis model. Commun. Math. Sci. 2017, 15, 1581–1616. [Google Scholar] [CrossRef]
- Zhigun, A.; Surulescu, C.; Uatay, A. Global existence for a degenerate haptotaxis model of cancer invasion. Z. Angew. Math. Phys. 2016, 67, 146. [Google Scholar] [CrossRef]
- Friedman, A.; Tello, J.I. Stability of solutions of chemotaxis equations in reinforced random walks. J. Math. Anal. Appl. 2002, 272, 138–163. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, H. A parabolic–hyperbolic free boundary problem modelling tumor treatment with virus. Math. Model Methods Appl. Sci. 2007, 17, 63–80. [Google Scholar] [CrossRef]
- Ladyzenskaja, O.A.; Solonnikov, V.A.; Ural’ceva, N. Linear and Quasi-Linear Equations of Parabolic Type; American Mathematical Society: New York, NY, USA, 1968. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Jia, F. Global Solution and Stability of a Haptotaxis Mathematical Model for Complex MAP. Mathematics 2024, 12, 1116. https://doi.org/10.3390/math12071116
Chen H, Jia F. Global Solution and Stability of a Haptotaxis Mathematical Model for Complex MAP. Mathematics. 2024; 12(7):1116. https://doi.org/10.3390/math12071116
Chicago/Turabian StyleChen, Hongbing, and Fengling Jia. 2024. "Global Solution and Stability of a Haptotaxis Mathematical Model for Complex MAP" Mathematics 12, no. 7: 1116. https://doi.org/10.3390/math12071116
APA StyleChen, H., & Jia, F. (2024). Global Solution and Stability of a Haptotaxis Mathematical Model for Complex MAP. Mathematics, 12(7), 1116. https://doi.org/10.3390/math12071116