A Full-Newton Step Interior-Point Method for Weighted Quadratic Programming Based on the Algebraic Equivalent Transformation
Abstract
:1. Introduction
2. CQP and Its Weighted Central Path
3. New Search Direction and Algorithm
Algorithm 1: Full-Newton step IPM for WCQP |
Input: the accuracy parameter ; the threshold parameter ; the barrier update parameter ; An initial point with , where ; ; begin ; while do Set ; Determine according to (7); Set ; end end. |
4. Analysis of the Algorithm
5. Iteration Bound
6. Numerical Results
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karmarkar, N.K. A new polynomial-time algorithm for linear programming. Combinatorica 1984, 4, 375–395. [Google Scholar] [CrossRef]
- Roos, C.; Terlaky, T.; Vial, J.-P. Theory and Algorithms for Linear Optimization. An Interior-Point Approach; John Wiley & Sons: Chichester, UK, 1997. [Google Scholar]
- Darvay, Z. New interior-point algorithm in linear programming. Adv. Model. Optim. 2003, 5, 51–92. [Google Scholar]
- Achache, M. Complexity analysis and numerical implementation of a short-step primal-dual algorithm for linear complementarity problems. Appl. Math. Comput. 2010, 216, 1889–1895. [Google Scholar] [CrossRef]
- Wang, G.Q.; Bai, Y. A new primal-dual path-following interior-point algorithm for semidefinite optimization. J. Math. Anal. Appl. 2009, 353, 339–349. [Google Scholar] [CrossRef]
- Wang, G.Q.; Bai, Y. A primal-dual interior-point algorithm for second-order cone optimization with full Nesterov-Todd step. Appl. Math. Comput. 2009, 215, 1047–1061. [Google Scholar] [CrossRef]
- Wang, G.Q.; Bai, Y. A new full Nesterov-Todd step primal-dual path-following interior-point algorithm for symmetric optimization. J. Optim. Theory Appl. 2012, 154, 966–985. [Google Scholar] [CrossRef]
- Wang, G.Q.; Fan, X.J.; Zhu, D.T.; Wang, D.Z. New complexity analysis of a full-Newton step feasible interior-point algorithm for P*(κ)-LCP. Optim. Lett. 2015, 9, 1105–1119. [Google Scholar] [CrossRef]
- Boudjellal, N.; Roumili, H.; Benterki, D. A primal-dual interior point algorithm for convex quadratic programming based on a new parametric kernel function. Optimization 2020, 70, 1703–1724. [Google Scholar] [CrossRef]
- Boudjellal, N.; Roumili, H.; Benterki, D. Complexity analysis of interior point methods for convex quadratic programming based on a parameterized kernel function. Bol. Soc. Parana. Mat. 2020, 40, 1–16. [Google Scholar] [CrossRef]
- Potra, F.A. Weighted complementarity problems- a new paradigm for computing equilibria. SIAM J. Optim. 2012, 2, 1634–1654. [Google Scholar] [CrossRef]
- Asadi, S.; Darvay, Z.; Lesaja, G.; Mahdavi-Amiri, N.; Potra, F.A. A full-Newton step interior-point method for monotone weighted linear complementarity problems. J. Optim. Theory Appl. 2020, 186, 864–878. [Google Scholar] [CrossRef]
- Kheirfam, B. Complexity analysis of a full-Newton step interior-point method for monotone weighted linear complementarity problems. J. Optim. Theory Appl. 2022. [Google Scholar] [CrossRef]
- Zhang, L.; Chi, X.; Zhang, S.; Yang, Y. A predictor-corrector interior-point algorithm for P*(κ)-weighted linear complementarity problems. AIMS Math. 2023, 8, 9212–9229. [Google Scholar] [CrossRef]
- Boudjellal, N.; Benterki, D. A new full-Newton step feasible interior point method for convex quadratic programming. Optimization 2023. [Google Scholar] [CrossRef]
- Potra, F.A. Sufficient weighted complementarity problems. Comput. Optim. Appl. 2016, 64, 467–488. [Google Scholar] [CrossRef]
Exam. | iter | iter [15] | pri | dua | |
---|---|---|---|---|---|
Exam. 1 | 43 | 55 | −4.4999 | −4.4995 | |
Exam. 1 | 3cc | 48 | 64 | −4.4999 | −4.4994 |
Exam. 1 | cc | 45 | 54 | −4.4999 | −4.4994 |
Exam. 1 | (n + 1)cc | 46 | 78 | −4.4999 | −4.4994 |
Exam. 2 | cc + | 44 | 51 | −7.1614 | −7.1610 |
Exam. 2 | 3cc | 49 | 58 | −7.1614 | −7.1609 |
Exam. 2 | cc | 46 | 52 | −7.1614 | −7.1610 |
Exam. 2 | n cc | 50 | 83 | −7.1614 | −7.1609 |
Exam. 3 | cc + | 57 | 64 | 172.7165 | 172.7169 |
Exam. 3 | 3cc | 62 | 78 | 172.7165 | 172.7170 |
Exam. 3 | cc | 59 | 67 | 172.7165 | 172.7169 |
Exam. 3 | n cc | 61 | 89 | 172.7165 | 172.7170 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, Y.; Su, J.; Kheirfam, B. A Full-Newton Step Interior-Point Method for Weighted Quadratic Programming Based on the Algebraic Equivalent Transformation. Mathematics 2024, 12, 1104. https://doi.org/10.3390/math12071104
Rao Y, Su J, Kheirfam B. A Full-Newton Step Interior-Point Method for Weighted Quadratic Programming Based on the Algebraic Equivalent Transformation. Mathematics. 2024; 12(7):1104. https://doi.org/10.3390/math12071104
Chicago/Turabian StyleRao, Yongsheng, Jianwei Su, and Behrouz Kheirfam. 2024. "A Full-Newton Step Interior-Point Method for Weighted Quadratic Programming Based on the Algebraic Equivalent Transformation" Mathematics 12, no. 7: 1104. https://doi.org/10.3390/math12071104
APA StyleRao, Y., Su, J., & Kheirfam, B. (2024). A Full-Newton Step Interior-Point Method for Weighted Quadratic Programming Based on the Algebraic Equivalent Transformation. Mathematics, 12(7), 1104. https://doi.org/10.3390/math12071104