HEDV-Greedy: An Advanced Algorithm for Influence Maximization in Hypergraphs
Abstract
:1. Introduction
- We propose a novel function, HEDV, designed to evaluate the spreading influence of seed nodes on hypergraphs. To the best of our knowledge, HEDV is the first quantitative function utilized for evaluating node influence on hypergraphs within this domain. HEDV considers both the topological structure and spreading processes, leading to highly precise evaluations.
- Based on the HEDV function, we propose an efficient solution to the HIM problem, termed HEDV-greedy. This method represents the first attempt to combine an alternative evaluation method with greedy selection strategies for seed node selection. While avoiding the significant time overhead associated with Monte Carlo simulations, it is capable of obtaining highly accurate solutions.
- We further conduct extensive experiments on real-world hypergraph datasets, benchmarking HEDV-greedy against other state-of-the-art methods for the HIM problem. The results demonstrate that HEDV-greedy significantly reduces time complexity by two orders of magnitude compared to traditional greedy method. Moreover, HEDV-greedy outperforms other baselines across all datasets, achieving an average improvement of 25.76%.
- We analyze experimental results under various parameter settings, utilizing visualization techniques and non-parametric tests. The results indicate that HEDV-greedy demonstrates high stability and consistently provides superior solutions across a variety of scenarios. Furthermore, we undertake a comprehensive analysis to achieve a more profound comprehension of the factors that influence the effectiveness of the proposed method.
Organization of the Article
2. Related Works
3. The Proposed Algorithm
3.1. SIS-Based Information Diffusion Model in Hypergraphs
Algorithm 1: The susceptible–infected spreading model with contact process dynamics (SICP) | |
Input: Output: | Seed node set Max time step Hypergraph Spreading probability Infected nodes set |
1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: | Initialization: , while do: for do: ← Hyperedges of node ← Randomly select from ← Nodes of hyperedge for do: Generate a number between randomly If : end end end end |
3.2. HEDV: A Function for Evaluating the Diffusion Capacity of Nodes on Hypergraphs
3.3. HEDV-Greedy: Algorithm for Selecting the Seed Nodes with Maximum Influence
Algorithm 2: HEDV-Greedy | ||
Input: Output: | Size of seed nodes Hypergraph Seed node set | |
1: 2: 3: 4: 5: 6: | Initialization: , while do: end |
4. Experiment
4.1. Datasets
4.2. Algorithms for Comparison
4.3. Effectiveness on Real-World Datasets
4.4. Efficiency
4.5. Parameters Sensitivities
4.6. Non-Parametric Test
4.7. Comprehensive Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, C.; Xu, G.; Yang, P.; Meng, L. TSIFIM: A Three-Stage Iterative Framework for Influence Maximization in Complex Networks. Expert Syst. Appl. 2023, 212, 118702. [Google Scholar] [CrossRef]
- Song, G.; Zhou, X.; Wang, Y.; Xie, K. Influence Maximization on Large-Scale Mobile Social Network: A Divide-and-Conquer Method. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 1379–1392. [Google Scholar] [CrossRef]
- Domingos, P.; Richardson, M. Mining the Network Value of Customers. In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 26–29 August 2001; pp. 57–66. [Google Scholar]
- Pei, S.; Makse, H.A. Spreading Dynamics in Complex Networks. J. Stat. Mech. 2013, 2013, P12002. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Liu, Y.; Li, Q. MAHE-IM: Multiple Aggregation of Heterogeneous Relation Embedding for Influence Maximization on Heterogeneous Information Network. Expert Syst. Appl. 2022, 202, 117289. [Google Scholar] [CrossRef]
- Poulik, S.; Ghorai, G.; Xin, Q. Explication of Crossroads Order Based on Randic Index of Graph with Fuzzy Information. Soft Comput. 2024, 28, 1851–1864. [Google Scholar] [CrossRef]
- Mathew, S.; Mordeson, J.N. Connectivity Concepts in Fuzzy Incidence Graphs. Inf. Sci. 2017, 382–383, 326–333. [Google Scholar] [CrossRef]
- Das, S.; Poulik, S.; Ghorai, G. Picture Fuzzy ϕ-Tolerance Competition Graphs with Its Application. J. Ambient. Intell. Humaniz. Comput. 2024, 15, 547–559. [Google Scholar] [CrossRef]
- Kak, S. Power Series Models of Self-Similarity in Social Networks. Inf. Sci. 2017, 376, 31–38. [Google Scholar] [CrossRef]
- Bretto, A. Hypergraph Theory: An Introduction; Mathematical Engineering; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2013; ISBN 978-3-319-00079-4. [Google Scholar]
- Kempe, D.; Kleinberg, J.; Tardos, É. Maximizing the Spread of Influence through a Social Network. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 24–27 August 2003; pp. 137–146. [Google Scholar]
- Jiang, Q.; Song, G.; Gao, C.; Wang, Y.; Si, W.; Xie, K. Simulated Annealing Based Influence Maximization in Social Networks. Proc. AAAI Conf. Artif. Intell. 2011, 25, 127–132. [Google Scholar] [CrossRef]
- Leskovec, J.; Krause, A.; Guestrin, C.; Faloutsos, C.; VanBriesen, J.; Glance, N. Cost-Effective Outbreak Detection in Networks. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, CA, USA, 12–15 August 2007; pp. 420–429. [Google Scholar]
- Goyal, A.; Lu, W.; Lakshmanan, L.V.S. CELF++: Optimizing the Greedy Algorithm for Influence Maximization in Social Networks. In Proceedings of the 20th International Conference Companion on World Wide Web, Hyderabad, India, 28 March–1 April 2011; pp. 47–48. [Google Scholar]
- Chen, W.; Wang, Y.; Yang, S. Efficient Influence Maximization in Social Networks. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; pp. 199–208. [Google Scholar]
- Estrada, E.; Rodríguez-Velázquez, J.A. Subgraph Centrality in Complex Networks. Phys. Rev. E 2005, 71, 056103. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in Social Networks Conceptual Clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef]
- Borgs, C.; Brautbar, M.; Chayes, J.; Lucier, B. Maximizing Social Influence in Nearly Optimal Time. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, Portland, OR, USA, 5–7 January 2014; pp. 946–957. [Google Scholar]
- Tang, Y.; Xiao, X.; Shi, Y. Influence Maximization: Near-Optimal Time Complexity Meets Practical Efficiency. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, Snowbird, UT, USA, 22–27 June 2014; pp. 75–86. [Google Scholar]
- Tang, Y.; Shi, Y.; Xiao, X. Influence Maximization in Near-Linear Time: A Martingale Approach. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, VIC, Australia, 31 May–4 June 2015; pp. 1539–1554. [Google Scholar]
- Nguyen, H.T.; Thai, M.T.; Dinh, T.N. Stop-and-Stare: Optimal Sampling Algorithms for Viral Marketing in Billion-Scale Networks. In Proceedings of the 2016 International Conference on Management of Data, San Francisco, CA, USA, 26 June–1 July 2016; pp. 695–710. [Google Scholar]
- Wang, Y.; Cong, G.; Song, G.; Xie, K. Community-Based Greedy Algorithm for Mining Top-K Influential Nodes in Mobile Social Networks. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 25–28 July 2010; pp. 1039–1048. [Google Scholar]
- Bozorgi, A.; Haghighi, H.; Sadegh Zahedi, M.; Rezvani, M. INCIM: A Community-Based Algorithm for Influence Maximization Problem under the Linear Threshold Model. Inf. Process. Manag. 2016, 52, 1188–1199. [Google Scholar] [CrossRef]
- Rahimkhani, K.; Aleahmad, A.; Rahgozar, M.; Moeini, A. A Fast Algorithm for Finding Most Influential People Based on the Linear Threshold Model. Expert Syst. Appl. 2015, 42, 1353–1361. [Google Scholar] [CrossRef]
- Gong, M.; Yan, J.; Shen, B.; Ma, L.; Cai, Q. Influence Maximization in Social Networks Based on Discrete Particle Swarm Optimization. Inf. Sci. 2016, 367–368, 600–614. [Google Scholar] [CrossRef]
- Estrada, E.; Rodríguez-Velázquez, J.A. Subgraph Centrality and Clustering in Complex Hyper-Networks. Phys. A Stat. Mech. Its Appl. 2006, 364, 581–594. [Google Scholar] [CrossRef]
- Ma, N.; Liu, Y. SuperedgeRank Algorithm and Its Application in Identifying Opinion Leader of Online Public Opinion Supernetwork. Expert Syst. Appl. 2014, 41, 1357–1368. [Google Scholar] [CrossRef]
- Contisciani, M.; Battiston, F.; De Bacco, C. Inference of Hyperedges and Overlapping Communities in Hypergraphs. Nat. Commun. 2022, 13, 7229. [Google Scholar] [CrossRef]
- Ruggeri, N.; Contisciani, M.; Battiston, F.; De Bacco, C. Community Detection in Large Hypergraphs. Sci. Adv. 2023, 9, eadg9159. [Google Scholar] [CrossRef]
- Benson, A.R.; Abebe, R.; Schaub, M.T.; Jadbabaie, A.; Kleinberg, J. Simplicial Closure and Higher-Order Link Prediction. Proc. Natl. Acad. Sci. USA 2018, 115, E11221–E11230. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, J.; Ghosh, S.; Wu, W.; Yuan, J. Social Influence Maximization in Hypergraph in Social Networks. IEEE Trans. Netw. Sci. Eng. 2019, 6, 801–811. [Google Scholar] [CrossRef]
- Du, M. Research on Information Dissemination Model of Social Network Services Based on Probabilistic Hyper-Graph. Int. J. Signal Process. Image Process. Pattern Recognit. 2015, 8, 267–274. [Google Scholar] [CrossRef]
- Bodó, Á.; Katona, G.Y.; Simon, P.L. SIS Epidemic Propagation on Hypergraphs. Bull. Math. Biol. 2016, 78, 713–735. [Google Scholar] [CrossRef] [PubMed]
- Suo, Q.; Guo, J.-L.; Shen, A.-Z. Information Spreading Dynamics in Hypernetworks. Phys. A Stat. Mech. Its Appl. 2018, 495, 475–487. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Z.; Liu, W. Information Dissemination in Dynamic Hypernetwork. Phys. A Stat. Mech. Its Appl. 2019, 532, 121578. [Google Scholar] [CrossRef]
- Antelmi, A.; Cordasco, G.; Spagnuolo, C.; Szufel, P. Information Diffusion in Complex Networks: A Model Based on Hypergraphs and Its Analysis. In Algorithms and Models for the Web Graph; Kamiński, B., Prałat, P., Szufel, P., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12091, pp. 36–51. ISBN 978-3-030-48477-4. [Google Scholar]
- Wang, J.; Wang, Z.; Yu, P.; Xu, Z. The Impact of Different Strategy Update Mechanisms on Information Dissemination under Hyper Network Vision. Commun. Nonlinear Sci. Numer. Simul. 2022, 113, 106585. [Google Scholar] [CrossRef]
- Xiao, Q. A Method for Measuring Node Importance in Hypernetwork Model. Res. J. Appl. Sci. Eng. Technol. 2013, 5, 568–573. [Google Scholar] [CrossRef]
- Kapoor, K.; Sharma, D.; Srivastava, J. Weighted Node Degree Centrality for Hypergraphs. In Proceedings of the 2013 IEEE 2nd Network Science Workshop (NSW), West Point, NY, USA, 29 April–1 May 2013; pp. 152–155. [Google Scholar]
- Zheng, H.; Wang, N.; Wu, J. Non-Submodularity and Approximability: Influence Maximization in Online Social Networks. In Proceedings of the 2019 IEEE 20th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Washington, DC, USA, 10–12 June 2019; pp. 1–9. [Google Scholar]
- Antelmi, A.; Cordasco, G.; Spagnuolo, C.; Szufel, P. Social Influence Maximization in Hypergraphs. Entropy 2021, 23, 796. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Zhan, X.-X.; Liu, C.; Zhang, Z.-K. An Efficient Adaptive Degree-Based Heuristic Algorithm for Influence Maximization in Hypergraphs. Inf. Process. Manag. 2023, 60, 103161. [Google Scholar] [CrossRef]
- Goh, K.-I.; Cusick, M.E.; Valle, D.; Childs, B.; Vidal, M.; Barabási, A.-L. The Human Disease Network. Proc. Natl. Acad. Sci. USA 2007, 104, 8685–8690. [Google Scholar] [CrossRef]
- King, Z.A.; Lu, J.; Dräger, A.; Miller, P.; Federowicz, S.; Lerman, J.A.; Ebrahim, A.; Palsson, B.O.; Lewis, N.E. BiGG Models: A Platform for Integrating, Standardizing and Sharing Genome-Scale Models. Nucleic Acids Res. 2016, 44, D515–D522. [Google Scholar] [CrossRef]
- Pan, Q.; Tang, J.; Lao, S. EDOA: An Elastic Deformation Optimization Algorithm. Appl. Intell. 2022, 52, 17580–17599. [Google Scholar] [CrossRef]
Hypergraphs | |||||||||
---|---|---|---|---|---|---|---|---|---|
143 | 1542 | 25.17 | 32.5 | 3.01 | 0.59 | 2.07 | 4 | 0.18 | |
Committees | 282 | 315 | 100.77 | 19.26 | 17.24 | 0.68 | 1.69 | 3 | 0.36 |
Algebra | 423 | 1268 | 78.9 | 19.53 | 6.52 | 0.8 | 1.95 | 5 | 0.19 |
Diseasome | 516 | 903 | 4.6 | 3 | 1.72 | 0.64 | 6.5 | 15 | 0.01 |
Restaurant | 565 | 601 | 79.75 | 8.14 | 7.66 | 0.54 | 1.98 | 5 | 0.14 |
Geometry | 580 | 1193 | 164.79 | 21.53 | 10.47 | 0.82 | 1.75 | 4 | 0.28 |
NDC | 1161 | 1088 | 10.72 | 5.55 | 5.92 | 0.61 | 3.5 | 9 | 0.01 |
iAF1260b | 1668 | 2351 | 13.26 | 5.46 | 3.87 | 0.56 | 2.67 | 7 | 0.01 |
Datasets | Our Method | Baselines | Boost | ||||||
---|---|---|---|---|---|---|---|---|---|
HEDV-Greedy | HADP | HSDP | H-RIS | H-CI (l = 1) | H-CI (l = 2) | H-Degree | Degree | 21.7%↑ | |
Algebra | 0.1600 | 0.1374 * | 0.1128 | 0.1084 | 0.0791 | 0.0767 | 0.0779 | 0.0846 | 16.4%↑ |
Diseasome | 0.1740 | 0.1030 | 0.1026 | 0.1110 * | 0.0820 | 0.0811 | 0.0774 | 0.0969 | 56.8%↑ |
0.1375 | 0.1144 * | 0.1140 | 0.1139 | 0.0954 | 0.0980 | 0.0975 | 0.0995 | 20.2%↑ | |
Geometry | 0.1206 | 0.1134 * | 0.1107 | 0.1115 | 0.1042 | 0.1042 | 0.1042 | 0.1046 | 6.30%↑ |
iAF1260b | 0.1821 | 0.1473 * | 0.1071 | 0.0759 | 0.0754 | 0.0722 | 0.0736 | 0.0816 | 23.6%↑ |
NDC | 0.1448 | 0.1175 | 0.1216 * | 0.0934 | 0.0902 | 0.0906 | 0.0906 | 0.0962 | 23.2%↑ |
Restaurant | 0.1349 | 0.1116 * | 0.1058 | 0.1084 | 0.1003 | 0.0959 | 0.0984 | 0.1055 | 20.9%↑ |
Committees | 0.1216 | 0.1146 * | 0.1102 | 0.1140 | 0.1033 | 0.1020 | 0.1028 | 0.1059 | 6.10%↑ |
Datasets | Running Time (Seconds) | ||||||||
---|---|---|---|---|---|---|---|---|---|
HEDV-Greedy | Greedy | HADP | HSDP | H-RIS | H-CI (l = 1) | H-CI (l = 2) | H-Degree | Degree | |
Algebra | 1.07 × 103 | 6.72 × 105 | 8.85 × 100 | 8.15 × 10−1 | 1.81 × 102 | 5.93 × 10−1 | 2.26 × 102 | 2.20 × 10−1 | 7.92 × 10−1 |
Diseasome | 3.02 × 101 | 1.88 × 105 | 4.50 × 10−1 | 3.16 × 10−1 | 7.80 × 101 | 1.66 × 10−1 | 1.64 × 102 | 2.52 × 10−1 | 5.16 × 10−1 |
1.82 × 102 | 2.51 × 104 | 2.38 × 100 | 4.20 × 10−1 | 3.19 × 101 | 2.92 × 10−1 | 3.36 × 101 | 8.40 × 10−2 | 3.54 × 10−1 | |
Geometry | 3.75 × 103 | 2.30 × 106 | 2.02 × 101 | 1.26 × 100 | 6.42 × 102 | 1.01 × 100 | 5.05 × 102 | 4.84 × 10−1 | 1.80 × 100 |
iAF1260b | 3.63 × 103 | 1.46 × 106 | 8.01 × 100 | 2.11 × 100 | 8.39 × 103 | 1.19 × 100 | 6.30 × 104 | 1.34 × 100 | 2.74 × 100 |
NDC | 3.59 × 103 | 9.03 × 105 | 3.83 × 100 | 1.36 × 100 | 1.37 × 103 | 7.68 × 10−1 | 1.98 × 103 | 9.24 × 10−1 | 1.94 × 100 |
Restaurant | 1.05 × 103 | 9.92 × 105 | 4.30 × 100 | 7.04 × 10−1 | 5.70 × 101 | 4.02 × 10−1 | 9.80 × 101 | 2.84 × 10−1 | 7.45 × 10−1 |
Committees | 7.82 × 102 | 4.03 × 105 | 5.23 × 100 | 5.48 × 10−1 | 7.81 × 100 | 3.80 × 10−1 | 9.91 × 100 | 1.36 × 10−1 | 4.85 × 10−1 |
Datasets | Our Method | Baselines | Boost | ||||||
---|---|---|---|---|---|---|---|---|---|
HEDV-Greedy | HADP | HSDP | H-RIS | H-CI (l = 1) | H-CI (l = 2) | H-Degree | Degree | 25.8%↑ | |
Algebra | 0.1812 | 0.1477 * | 0.1108 | 0.1016 | 0.0699 | 0.0671 | 0.0686 | 0.0761 | 22.7%↑ |
Diseasome | 0.1644 | 0.1034 | 0.1034 | 0.1109 * | 0.0877 | 0.0870 | 0.0841 | 0.0992 | 48.2%↑ |
0.1332 | 0.1133 * | 0.1131 | 0.1132 | 0.0984 | 0.1007 | 0.1002 | 0.1020 | 17.6%↑ | |
Geometry | 0.1296 | 0.1163 * | 0.1110 | 0.1108 | 0.0991 | 0.0993 | 0.0991 | 0.1002 | 11.4%↑ |
iAF1260b | 0.1872 | 0.1422 * | 0.1052 | 0.0793 | 0.0770 | 0.0746 | 0.0754 | 0.0817 | 31.6%↑ |
NDC | 0.1492 | 0.1132 | 0.1195 * | 0.0896 | 0.0937 | 0.0939 | 0.0940 | 0.0988 | 24.9%↑ |
Restaurant | 0.1560 | 0.1115 * | 0.1021 | 0.1074 | 0.0948 | 0.0879 | 0.0914 | 0.1014 | 39.9%↑ |
Committees | 0.1284 | 0.1169 * | 0.1103 | 0.1157 | 0.0997 | 0.0979 | 0.0990 | 0.1038 | 9.80%↑ |
Datasets | Our Method | Baselines | Boost | ||||||
---|---|---|---|---|---|---|---|---|---|
HEDV-Greedy | HADP | HSDP | H-RIS | H-CI (l = 1) | H-CI (l = 2) | H-Degree | Degree | 16.8%↑ | |
Algebra | 0.1335 | 0.1231 * | 0.1122 | 0.1132 | 0.0944 | 0.0929 | 0.0935 | 0.0974 | 8.40%↑ |
Diseasome | 0.1814 | 0.1041 * | 0.1033 | 0.1112 | 0.0754 | 0.0742 | 0.0696 | 0.0950 | 74.3%↑ |
0.1408 | 0.1167 * | 0.1150 | 0.1153 | 0.0917 | 0.0949 | 0.0942 | 0.0967 | 20.7%↑ | |
Geometry | 0.1153 | 0.1120 | 0.1109 | 0.1121 * | 0.1075 | 0.1075 | 0.1075 | 0.1077 | 2.90%↑ |
iAF1260b | 0.1660 | 0.1455 * | 0.1098 | 0.0774 | 0.0809 | 0.0762 | 0.0781 | 0.0871 | 14.1%↑ |
NDC | 0.1350 | 0.1249 * | 0.1242 | 0.1028 | 0.0864 | 0.0864 | 0.0866 | 0.0936 | 8.10%↑ |
Restaurant | 0.1158 | 0.1111 * | 0.1093 | 0.1103 | 0.1068 | 0.1061 | 0.1066 | 0.1089 | 4.20%↑ |
Committees | 0.1144 | 0.1127 * | 0.1105 | 0.1118 | 0.1075 | 0.1071 | 0.1074 | 0.1084 | 1.50%↑ |
Datasets | Our Method | Baselines | Boost | ||||||
---|---|---|---|---|---|---|---|---|---|
HEDV-Greedy | HADP | HSDP | H-RIS | H-CI (l = 1) | H-CI (l = 2) | H-Degree | Degree | 13.6%↑ | |
Algebra | 0.1268 | 0.1194 * | 0.1116 | 0.1136 | 0.0987 | 0.0978 | 0.0981 | 0.1008 | 6.20%↑ |
Diseasome | 0.1814 | 0.1052 | 0.1040 | 0.1113 * | 0.0743 | 0.0729 | 0.0680 | 0.0951 | 63.0%↑ |
0.1408 | 0.1174 * | 0.1153 | 0.1157 | 0.091 | 0.0944 | 0.0937 | 0.0962 | 19.9%↑ | |
Geometry | 0.1139 | 0.1117 | 0.1108 | 0.1121 * | 0.1085 | 0.1085 | 0.1085 | 0.1087 | 1.60%↑ |
iAF1260b | 0.1593 | 0.1424 * | 0.1098 | 0.0800 | 0.0844 | 0.0796 | 0.0813 | 0.0899 | 11.9%↑ |
NDC | 0.1322 | 0.1272 * | 0.1251 | 0.1059 | 0.0855 | 0.0853 | 0.0856 | 0.0931 | 3.90%↑ |
Restaurant | 0.1132 | 0.1109 | 0.1096 | 0.1116 * | 0.1080 | 0.1080 | 0.1080 | 0.1093 | 1.40%↑ |
Committees | 0.1131 | 0.1124 * | 0.1107 | 0.1114 | 0.1084 | 0.1082 | 0.1083 | 0.1090 | 0.60%↑ |
Datasets | Baselines | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HADP | HSDP | H-RIS | H-CI (l = 1) | H-CI (l = 2) | H-Degree | Degree | |||||||||||||||
R+ | R− | p | R+ | R− | p | R+ | R− | p | R+ | R− | p | R+ | R− | p | R+ | R− | p | R+ | R− | p | |
Algebra | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 |
Diseasome | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 |
465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | |
Geometry | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 |
iAF1260b | 443 | 22 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 |
NDC | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 |
Restaurant | 465 | 0 | 0 | 465 | 0 | 0 | 463 | 2 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 |
Committees | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 | 465 | 0 | 0 |
Datasets | Our Method | Baselines | |||||||
---|---|---|---|---|---|---|---|---|---|
HEDV-Greedy | HADP | HSDP | H-RIS | H-CI (I = 1) | H-CI (I = 2) | H-Degree | Degree | ||
Algebra | Ranksum | 30 * | 65 | 97 | 116 | 180 | 223 | 214 | 155 |
Friedman rank | 1.00 * | 2.17 | 3.23 | 3.87 | 6 | 7.43 | 7.13 | 5.17 | |
General rank | 1 * | 2 | 3 | 4 | 6 | 8 | 7 | 5 | |
Diseasome | Ranksum | 30 * | 110 | 110 | 72 | 182 | 207 | 237 | 132 |
Friedman rank | 1.00 * | 3.67 | 3.67 | 2.4 | 6.07 | 6.9 | 7.9 | 4.4 | |
General rank | 1 * | 3.5 | 3.5 | 2 | 6 | 7 | 8 | 5 | |
Ranksum | 30 * | 87 | 91 | 121 | 221 | 183 | 196 | 151 | |
Friedman rank | 1.00 * | 2.9 | 3.03 | 4.03 | 7.37 | 6.1 | 6.53 | 5.03 | |
General rank | 1 * | 2 | 3 | 4 | 8 | 6 | 7 | 5 | |
Geometry | Ranksum | 30 * | 82 | 120 | 113 | 190 | 191 | 193 | 161 |
Friedman rank | 1.00 * | 2.73 | 4 | 3.77 | 6.33 | 6.37 | 6.43 | 5.37 | |
General rank | 1 * | 2 | 4 | 3 | 6 | 7 | 8 | 5 | |
iAF1260b | Ranksum | 34 * | 70 | 100 | 138 | 176 | 216 | 189 | 157 |
Friedman rank | 1.13 * | 2.33 | 3.33 | 4.6 | 5.87 | 7.2 | 6.3 | 5.23 | |
General rank | 1 * | 2 | 3 | 4 | 6 | 8 | 7 | 5 | |
NDC | Ranksum | 30 * | 93 | 73 | 174 | 190 | 189 | 190 | 141 |
Friedman rank | 1.00 * | 3.1 | 2.43 | 5.8 | 6.33 | 6.3 | 6.33 | 4.7 | |
General rank | 1 * | 3 | 2 | 5 | 7.5 | 6 | 7.5 | 4 | |
Restaurant | Ranksum | 31 * | 96 | 120 | 120 | 173 | 221 | 193 | 126 |
Friedman rank | 1.03 * | 3.2 | 4 | 4 | 5.77 | 7.37 | 6.43 | 4.2 | |
General rank | 1 * | 2 | 3.5 | 3.5 | 6 | 8 | 7 | 5 | |
Committees | Ranksum | 30 * | 82 | 114 | 78 | 182 | 237 | 207 | 150 |
Friedman rank | 1.00 * | 2.73 | 3.8 | 2.6 | 6.07 | 7.9 | 6.9 | 5 | |
General rank | 1 * | 3 | 4 | 2 | 6 | 8 | 7 | 5 |
Algorithms | Characteristics | Our Method | Greedy-Based Algorithms | Heuristic Solutions |
---|---|---|---|---|
HEDV-Greedy | Greedy, CELF, CELF++, etc. | H-Degree, Degree, etc. | ||
Influence evaluation | Methods | HEDV | Monte Carlo | Centrality |
Efficiency | ✓ | - | ✓ | |
Accuracy | ✓ | ✓ | - | |
Node selection | Methods | Maximum MV | Greedy strategy | Top-K |
Efficiency | ✓ | - | ✓ | |
Accuracy | ✓ | ✓ | - | |
Low overlap | ✓ | ✓ | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Pan, Q.; Tang, J. HEDV-Greedy: An Advanced Algorithm for Influence Maximization in Hypergraphs. Mathematics 2024, 12, 1041. https://doi.org/10.3390/math12071041
Wang H, Pan Q, Tang J. HEDV-Greedy: An Advanced Algorithm for Influence Maximization in Hypergraphs. Mathematics. 2024; 12(7):1041. https://doi.org/10.3390/math12071041
Chicago/Turabian StyleWang, Haosen, Qingtao Pan, and Jun Tang. 2024. "HEDV-Greedy: An Advanced Algorithm for Influence Maximization in Hypergraphs" Mathematics 12, no. 7: 1041. https://doi.org/10.3390/math12071041
APA StyleWang, H., Pan, Q., & Tang, J. (2024). HEDV-Greedy: An Advanced Algorithm for Influence Maximization in Hypergraphs. Mathematics, 12(7), 1041. https://doi.org/10.3390/math12071041