Weighted Optimal Formulas for Approximate Integration
Abstract
:1. Introduction and Problem Statement
2. Extremal Function of the Error Functional of the Quadrature Formula and Its Norm
3. Research on the Existence and Uniqueness of an Optimal Quadrature Formula
4. Algorithm S.L. Sobolev to Determine Optimal Coefficients
5. Modification of the Algorithm by S.L. Sobolev for Finding Optimal Coefficients
- The parity of implies the parity of . This is obvious.
- The function decreases to infinity at a faster rate than any negative power of . Moreover, both and are infinitely differentiable functions. Due to the infinite differentiability and summability of and its derivatives, it can be concluded thatIt follows that .
- The explicit form of . Due to the parity of , we haveFurther, we know that the equality is [10]We can obtain an explicit expression for the Fourier transform of the function in elementary functions by substituting and in the given equation. It is worth noting that the left side of (27) does not change when we replace x with because of the parity of the integrand. However, the right side is valid only for . Therefore, we replace the equality x with on the right side of the equation.
6. Algorithm for Constructing the Fourier Transform of Function
7. Discrete Analogue of one Differential Operator of the 2mth Order
8. Calculation of Coefficients of Optimal Lattice Quadrature Formulas
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schoenberg, I.J. Cardinal Spline Interpolation; SIAM: Philadelphia, PA, USA, 1973; p. 1276. [Google Scholar]
- Schoenberg, I.J. On equidistant cubic spline interpolation. Bull. Am. Math. Soc. 1971, 77, 1039–1044. [Google Scholar] [CrossRef]
- Schumaker, L.L. Spline Functions: Basic Theory; Cambridge University Press: Cambridge, UK, 2007; p. 600. [Google Scholar]
- Blaga, P.; Coman, G. Some problems on quadrature. Stud. Univ. Babeş-Bolyai Math. 2007, 52, 21–44. [Google Scholar]
- Ghizzetti, A.; Ossicini, A. Quadrature Formulae; Academie Verlag: Berlin, Germany, 1970; p. 192. [Google Scholar]
- Köhler, P. On the Weights of Sard’s Quadrature Formulas. Calcolo 1988, 25, 169–186. [Google Scholar] [CrossRef]
- Lanzara, F. On optimal quadrature formulae. J. Ineq. Appl. 2000, 5, 201–225. [Google Scholar] [CrossRef]
- Schoenberg, I.J. On mono splines of least deviation and best quadrature formulae. J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 1965, 2, 144–170. [Google Scholar] [CrossRef]
- Schoenberg, I.J. On mono splines of least square deviation and best quadrature formulae II. SIAM J. Numer. Anal. 1966, 3, 321–328. [Google Scholar] [CrossRef]
- Sobolev, S.L. Introduction to the Theory of Cubature Formulas; Nauka: Mosow, Russia, 1974; p. 808. (In Russian) [Google Scholar]
- Sobolev, S.L. Coefficients of optimal quadrature formulas. Dokl. Akad. Nauk SSSR 1977, 235, 34–37. (In Russian) [Google Scholar]
- Sobolev, S.L. The coefficients of optimal quadrature formulas. In Selected Works of S.L. Sobolev; Springer: New York, NY, USA, 2006; pp. 561–566. [Google Scholar]
- Sobolev, S.L.; Vaskevich, V.L. The Theory of Cubature Formulas; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1997; p. 484. [Google Scholar]
- Boltaev, A.K.; Akhmedov, D.M. On an exponential-trigonometric natural interpolation spline. AIP Conf. Proc. 2021, 2365, 020023. [Google Scholar]
- Babuska, I. Optimal quadrature formulas. Dokl. Akad. Nauk SSSR 1963, 149, 227–229. (In Russian) [Google Scholar]
- Sard, A. Best approximate integration formulas, best approximate formulas. Am. J. Math. 1949, LXXI, 80–91. [Google Scholar] [CrossRef]
- Catinaş, T.; Coman, G. Optimal quadrature formulas based on the φ-function method. Stud. Univ. Babeş-Bolyai Math. 2006, 51, 49–64. [Google Scholar]
- Coman, G. Formule de cuadrature de tip Sard. Univ. Babeş-Bolyai Ser. Math.-Mech. 1972, 17, 73–77. [Google Scholar]
- Coman, G. Monoplines and optimal quadrature. Formule Rend. Mat. 1972, 5, 567–577. [Google Scholar]
- Meyers, L.F.; Sard, A. Best approximate integration formulas. J. Math. Phys. 1950, XXIX, 118–123. [Google Scholar] [CrossRef]
- Nikol’skii, S.M. Quadrature Formulas; Nauka: Moscow, Russia, 1988; p. 256. (In Russian) [Google Scholar]
- Vasilenko, V.A. Spline Functions: Theory, Algorithms, Programs; Steklov Mathematical Institute: Novosibirsk, Russia, 1983; p. 215. (In Russian) [Google Scholar]
- Shadimetov, K.M. Optimal quadrature formulas of closed type in the space (0,1). arXiv 2010, arXiv:1005.0163. [Google Scholar]
- Hayotov, A.R. The discrete analogue of a differential operator and its applications. Lith. Math. J. 2014, 54, 290–307. [Google Scholar] [CrossRef]
- Boltaev, A.K.; Hayotov, A.R.; Shadimetov, K.M. Construction of optimal quadrature formulas exact for exponential-trigonometric functions by Sobolev’s method. Acta Math. Sin. Engl. Ser. 2021, 37, 1066–1088. [Google Scholar] [CrossRef]
- Shadimetov, K.M.; Boltaev, A.K.; Parovik, R. Optimization of the Approximate Integration Formula Using the Discrete Analogue of a High-Order Differential Operator. Mathematics 2023, 11, 3114. [Google Scholar] [CrossRef]
- Ramazanov, M.D. Problems of the theory of lattice cubature formulas. In Cubature Formulas and Their Applications: Proceedings of the VI International Seminar-Conference; Institute of Mathematics with Computing Center UFSC RAS: Ufa, Russia, 2001; pp. 103–105. (In Russian) [Google Scholar]
- Ramazanov, M.D.; Shadimetov, K.M. Weighted optimal cubature formulas in periodic Sobolev space. Dokl. Akad. Nauk SSSR 1999, 4, 453–455. (In Russian) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shadimetov, K.; Jalolov, I. Weighted Optimal Formulas for Approximate Integration. Mathematics 2024, 12, 738. https://doi.org/10.3390/math12050738
Shadimetov K, Jalolov I. Weighted Optimal Formulas for Approximate Integration. Mathematics. 2024; 12(5):738. https://doi.org/10.3390/math12050738
Chicago/Turabian StyleShadimetov, Kholmat, and Ikrom Jalolov. 2024. "Weighted Optimal Formulas for Approximate Integration" Mathematics 12, no. 5: 738. https://doi.org/10.3390/math12050738
APA StyleShadimetov, K., & Jalolov, I. (2024). Weighted Optimal Formulas for Approximate Integration. Mathematics, 12(5), 738. https://doi.org/10.3390/math12050738