Toward Optimal Fitting Parameters for Multi-Exponential DWI Image Analysis of the Human Kidney: A Simulation Study Comparing Different Fitting Algorithms
Abstract
:1. Introduction
2. Methods
2.1. Multi-Compartment Model
2.2. Non-Linear Least Square Fitting
2.3. Non-Negative Least Square Algorithm
2.4. Combined Non-Linear and Non-Negative LS Algorithms
2.5. Advanced NNLS Algorithm with AUC Constraint
2.6. Simulation and Reconstruction
2.7. Parameter Variation
2.8. Statistics
3. Results
3.1. Evaluation of Simulated NNLS Fitting
3.2. Parameter Variation
3.2.1. Signal-to-Noise Ratio
3.2.2. Distribution of b-Values
3.2.3. Number of Logarithmically Spaced Diffusion Coefficients
3.2.4. Diffusion Fitting Range
3.3. Simulation with Optimal Simulation Parameters
4. Discussion
4.1. Parameter Variations
4.2. Comparison of Fitting Methods
4.3. Limitations and Outlook
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUC | Area-Under-Curve |
DWI | Diffusion-weighted Imaging |
gT | Ground Truth |
IVIM | Intra-voxel Incoherent Motion |
MAPD | Median Absolute Percentage Deviation |
NLLS | Non-Linear Least-Squares |
NLLS* | Approach combining both NLLS and subsequent NNLS fitting |
NNLS | Non-Negative Least-Squares |
NNLSAUC | Approach adding AUC constraint after NNLS fitting |
SNR | Signal-to-Noise Ratio |
Appendix A
Method | dslow | dinter | dfast | Avg | fslow | finter | ffast | Avg | Total |
---|---|---|---|---|---|---|---|---|---|
NNLSAUC | 6.7 | 9.9 | 16.2 | 10.9 | 3.8 | 7.5 | 7.9 | 6.4 | 8.65 |
NNLS | 6.4 | 10.3 | 25.0 | 13.9 | 3.9 | 7.6 | 9.9 | 7.1 | 10.50 |
NLLS* | 15.7 | 22.4 | 19.5 | 19.2 | 12.3 | 22.1 | 8.0 | 14.1 | 16.65 |
NLLS | 13.9 | 20.3 | 15.4 | 16.5 | 10.7 | 20.0 | 6.4 | 12.4 | 14.45 |
References
- Caroli, A. Diffusion-Weighted Magnetic Resonance Imaging: Clinical Potential and Applications. J. Clin. Med. 2022, 11, 3339. [Google Scholar] [CrossRef]
- Le Bihan, D.; Turner, R.; Douek, P.; Patronas, N. Diffusion MR imaging: Clinical applications. AJR Am. J. Roentgenol. 1992, 159, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Thoeny, H.C.; De Keyzer, F.; Oyen, R.H.; Peeters, R.R. Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: Initial experience. Radiology 2005, 235, 911–917. [Google Scholar] [CrossRef]
- Woo, S.; Suh, C.H.; Kim, S.Y.; Cho, J.Y.; Kim, S.H. Diagnostic Performance of DWI for Differentiating High- From Low-Grade Clear Cell Renal Cell Carcinoma: A Systematic Review and Meta-Analysis. AJR Am. J. Roentgenol. 2017, 209, W374–W381. [Google Scholar] [CrossRef] [PubMed]
- Le Bihan, D.; Breton, E.; Lallemand, D.; Aubin, M.L.; Vignaud, J.; Laval-Jeantet, M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988, 168, 497–505. [Google Scholar] [CrossRef] [PubMed]
- MacKay, A.; Laule, C.; Vavasour, I.; Bjarnason, T.; Kolind, S.; Madler, B. Insights into brain microstructure from the T2 distribution. Magn. Reson. Imaging 2006, 24, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Cercueil, J.P.; Petit, J.M.; Nougaret, S.; Soyer, P.; Fohlen, A.; Pierredon-Foulongne, M.A.; Schembri, V.; Delhom, E.; Schmidt, S.; Denys, A.; et al. Intravoxel incoherent motion diffusion-weighted imaging in the liver: Comparison of mono-, bi- and tri-exponential modelling at 3.0-T. Eur. Radiol. 2015, 25, 1541–1550. [Google Scholar] [CrossRef]
- Wurnig, M.C.; Germann, M.; Boss, A. Is there evidence for more than two diffusion components in abdominal organs?—A magnetic resonance imaging study in healthy volunteers. NMR Biomed. 2018, 31, e3852. [Google Scholar] [CrossRef]
- van Baalen, S.; Leemans, A.; Dik, P.; Lilien, M.R.; Ten Haken, B.; Froeling, M. Intravoxel incoherent motion modeling in the kidneys: Comparison of mono-, bi-, and triexponential fit. J. Magn. Reson. Imaging 2017, 46, 228–239. [Google Scholar] [CrossRef]
- Chevallier, O.; Wang, Y.X.J.; Guillen, K.; Pellegrinelli, J.; Cercueil, J.P.; Loffroy, R. Evidence of Tri-Exponential Decay for Liver Intravoxel Incoherent Motion MRI: A Review of Published Results and Limitations. Diagnostics 2021, 11, 379. [Google Scholar] [CrossRef]
- Stabinska, J.; Ljimani, A.; Zollner, H.J.; Wilken, E.; Benkert, T.; Limberg, J.; Esposito, I.; Antoch, G.; Wittsack, H.J. Spectral diffusion analysis of kidney intravoxel incoherent motion MRI in healthy volunteers and patients with renal pathologies. Magn. Reson. Med. 2021, 85, 3085–3095. [Google Scholar] [CrossRef] [PubMed]
- Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Periquito, J.; Gladytz, T.; Millward, J.; Ramos Delgado, P.; Cantow, K.; Grosenick, D.; Hummel, L.; Anger, A.; Zhao, K.; Seeliger, E.; et al. Continuous diffusion spectrum computation for diffusion-weighted magnetic resonance imaging of the kidney tubule system. Quant. Imaging Med. Surg. 2021, 11, 3098–3119. [Google Scholar] [CrossRef] [PubMed]
- Lawson, C.L.; Hanson, R.J. Solving Least Squares Problems; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1995. [Google Scholar] [CrossRef]
- Whittall, K.P.; MacKay, A.L. Quantitative interpretation of NMR relaxation data. J. Magn. Reson. (1969) 1989, 84, 134–152. [Google Scholar] [CrossRef]
- van der Bel, R.; Gurney-Champion, O.J.; Froeling, M.; Stroes, E.S.G.; Nederveen, A.J.; Krediet, C.T.P. A tri-exponential model for intravoxel incoherent motion analysis of the human kidney: In silico and during pharmacological renal perfusion modulation. Eur. J. Radiol. 2017, 91, 168–174. [Google Scholar] [CrossRef]
- Sorensen, D.C. Newton’s Method with a Model Trust Region Modification. SIAM J. Numer. Anal. 1982, 19, 409–426. [Google Scholar] [CrossRef]
- Bjarnason, T.A.; Mitchell, J.R. AnalyzeNNLS: Magnetic resonance multiexponential decay image analysis. J. Magn. Reson. 2010, 206, 200–204. [Google Scholar] [CrossRef]
- Wiggermann, V.; Vavasour, I.M.; Kolind, S.H.; MacKay, A.L.; Helms, G.; Rauscher, A. Non-negative least squares computation for in vivo myelin mapping using simulated multi-echo spin-echo T(2) decay data. NMR Biomed. 2020, 33, e4277. [Google Scholar] [CrossRef]
- Park, H.J.; Sung, Y.S.; Lee, S.S.; Lee, Y.; Cheong, H.; Kim, Y.J.; Lee, M.G. Intravoxel incoherent motion diffusion-weighted MRI of the abdomen: The effect of fitting algorithms on the accuracy and reliability of the parameters. J. Magn. Reson. Imaging 2017, 45, 1637–1647. [Google Scholar] [CrossRef]
- Stabinska, J.; Zollner, H.J.; Thiel, T.A.; Wittsack, H.J.; Ljimani, A. Image downsampling expedited adaptive least-squares (IDEAL) fitting improves intravoxel incoherent motion (IVIM) analysis in the human kidney. Magn. Reson. Med. 2023, 89, 1055–1067. [Google Scholar] [CrossRef]
- Kong, H.; Wang, C.; Gao, F.; Zhang, X.; Yang, M.; Yang, L.; Wang, X.; Zhang, J. Early assessment of acute kidney injury using targeted field of view diffusion-weighted imaging: An in vivo study. Magn. Reson. Imaging 2019, 57, 1–7. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, H.; Qian, T.; An, J.; Shi, B.; Zhou, H.; Liu, Y.; Peng, X.; Liu, Y.; Chen, L.; et al. Diffusion-weighted imaging of the kidney: Comparison between simultaneous multi-slice and integrated slice-by-slice shimming echo planar sequence. Clin. Radiol. 2019, 74, 325.e1–325.e8. [Google Scholar] [CrossRef]
- While, P.T. A comparative simulation study of bayesian fitting approaches to intravoxel incoherent motion modeling in diffusion-weighted MRI. Magn. Reson. Med. 2017, 78, 2373–2387. [Google Scholar] [CrossRef]
- De Luca, A.; Leemans, A.; Bertoldo, A.; Arrigoni, F.; Froeling, M. A robust deconvolution method to disentangle multiple water pools in diffusion MRI. NMR Biomed. 2018, 31, e3965. [Google Scholar] [CrossRef]
- Ljimani, A.; Caroli, A.; Laustsen, C.; Francis, S.; Mendichovszky, I.A.; Bane, O.; Nery, F.; Sharma, K.; Pohlmann, A.; Dekkers, I.A.; et al. Consensus-based technical recommendations for clinical translation of renal diffusion-weighted MRI. Magn. Reson. Mater. Phys. Biol. Med. 2020, 33, 177–195. [Google Scholar] [CrossRef]
- Le Bihan, D. What can we see with IVIM MRI? Neuroimage 2019, 187, 56–67. [Google Scholar] [CrossRef]
- Gurney-Champion, O.J.; Klaassen, R.; Froeling, M.; Barbieri, S.; Stoker, J.; Engelbrecht, M.R.W.; Wilmink, J.W.; Besselink, M.G.; Bel, A.; van Laarhoven, H.W.M.; et al. Comparison of six fit algorithms for the intra-voxel incoherent motion model of diffusion-weighted magnetic resonance imaging data of pancreatic cancer patients. PLoS ONE 2018, 13, e0194590. [Google Scholar] [CrossRef] [PubMed]
- Kaandorp, M.P.T.; Barbieri, S.; Klaassen, R.; van Laarhoven, H.W.M.; Crezee, H.; While, P.T.; Nederveen, A.J.; Gurney-Champion, O.J. Improved unsupervised physics-informed deep learning for intravoxel incoherent motion modeling and evaluation in pancreatic cancer patients. Magn. Reson. Med. 2021, 86, 2250–2265. [Google Scholar] [CrossRef] [PubMed]
- Vidic, I.; Jerome, N.P.; Bathen, T.F.; Goa, P.E.; While, P.T. Accuracy of breast cancer lesion classification using intravoxel incoherent motion diffusion-weighted imaging is improved by the inclusion of global or local prior knowledge with bayesian methods. J. Magn. Reson. Imaging 2019, 50, 1478–1488. [Google Scholar] [CrossRef]
- Vasylechko, S.D.; Warfield, S.K.; Afacan, O.; Kurugol, S. Self-supervised IVIM DWI parameter estimation with a physics based forward model. Magn. Reson. Med. 2022, 87, 904–914. [Google Scholar] [CrossRef] [PubMed]
Ground truth values | |
Diff. coefficient blood () | 165 × 10−3 mm2/s |
Diff. coefficient tubule () | 5.8 × 10−3 mm2/s |
Diff. coefficient tissue () | 1 × 10−3 mm2/s |
Vol. fraction blood () | 0.1 |
Vol. fraction tubule () | 0.3 |
Vol. fraction tissue () | 0.6 |
Standard simulation parameters | |
b-value distribution [16] | [0, 5, 10, 20, 30, 40, 50, 75, 100, 150, 200, 250, 300, 400, 525, 750] |
SNR | 140 |
Iterations | 1000 |
Standard NNLS parameters | |
M | 300 |
0.7 × 10−3 mm2/s | |
300 × 10−3 mm2/s | |
Standard starting values NLLS | |
Diff. coefficients | [1.5, 30, 100] × 10−3 mm2/s |
Volume fractions | [0.50, 0.25, 0.20] |
Parameter | Variation |
---|---|
SNR | 50, 100, 110, 120, 130, 140, 600 |
Equidistant b-value distribution | 0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750 |
Interval b-value distribution | 0, 5, 10, 15, 20, 30, 50, 100, 150, 200, 250, 350, 450, 550, 650, 750 |
M | 100, 200, 250, 300, 350, 400, 600 |
Shortened Dmin and Dmax | [0.8–200] × 10−3 mm2/s |
Extended Dmin and Dmax | [0.5–500] × 10−3 mm2/s |
SNR | M | Dmin | Dmax | b-Value Distribution |
---|---|---|---|---|
140 | 350 | 0.7 × 10−3 mm2/s | 300 × 10−3 mm2/s | [0, 5, 10, 20, 30, 40, 50, 75, 100, 150, 200, 250, 300, 400, 525, 750] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasse, J.; Wittsack, H.-J.; Thiel, T.A.; Zukovs, R.; Valentin, B.; Antoch, G.; Ljimani, A. Toward Optimal Fitting Parameters for Multi-Exponential DWI Image Analysis of the Human Kidney: A Simulation Study Comparing Different Fitting Algorithms. Mathematics 2024, 12, 609. https://doi.org/10.3390/math12040609
Jasse J, Wittsack H-J, Thiel TA, Zukovs R, Valentin B, Antoch G, Ljimani A. Toward Optimal Fitting Parameters for Multi-Exponential DWI Image Analysis of the Human Kidney: A Simulation Study Comparing Different Fitting Algorithms. Mathematics. 2024; 12(4):609. https://doi.org/10.3390/math12040609
Chicago/Turabian StyleJasse, Jonas, Hans-Joerg Wittsack, Thomas Andreas Thiel, Romans Zukovs, Birte Valentin, Gerald Antoch, and Alexandra Ljimani. 2024. "Toward Optimal Fitting Parameters for Multi-Exponential DWI Image Analysis of the Human Kidney: A Simulation Study Comparing Different Fitting Algorithms" Mathematics 12, no. 4: 609. https://doi.org/10.3390/math12040609
APA StyleJasse, J., Wittsack, H.-J., Thiel, T. A., Zukovs, R., Valentin, B., Antoch, G., & Ljimani, A. (2024). Toward Optimal Fitting Parameters for Multi-Exponential DWI Image Analysis of the Human Kidney: A Simulation Study Comparing Different Fitting Algorithms. Mathematics, 12(4), 609. https://doi.org/10.3390/math12040609