On Value Distribution of Certain Beurling Zeta-Functions
Abstract
:1. Introduction
2. Case of Compact Group
3. Some Estimates
4. Proof of Theorem 2
5. Proof of Theorem 1
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ivič, A. The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications; John Wiley & Sons: New York, NY, USA, 1985. [Google Scholar]
- Landau, E. Neuer Beweis des Primzahlsatzes und Beweis des Primidealsatzes. Math. Ann. 1903, 56, 645–670. [Google Scholar] [CrossRef]
- Beurling, A. Analyse de la loi asymptotique de la distribution des nombres premiers généralisés. I. Acta Math. 1937, 68, 225–291. [Google Scholar] [CrossRef]
- Borel, J.-P. Sur le prolongement des functions ζ associées a un système de nombres premiers généralisés de Beurling. Acta Arith. 1984, 43, 273–282. [Google Scholar] [CrossRef]
- Diamond, H.G. The prime number theorem for Beurling’s generalized numbers. J. Number Theory 1969, 1, 200–207. [Google Scholar] [CrossRef]
- Diamond, H.G. Asymptotic distribution of Beurling’s generalized integers. Illinois J. Math. 1970, 14, 12–28. [Google Scholar] [CrossRef]
- Diamond, H.G. When do Beurling generalized integers have a density? J. Reine Angew. Math. 1977, 295, 22–39. [Google Scholar]
- Malliavin, P. Sur la reste de la loi asymptotique de répartion des nombres premiers généralisés de Beurling. Acta Math. 1961, 106, 281–298. [Google Scholar] [CrossRef]
- Nyman, B. A general prime number theorem. Acta Math. 1949, 81, 299–307. [Google Scholar] [CrossRef]
- Ryavec, C. The analytic continuation of Euler products with applications to asymptotic formulae. Illinois J. Math. 1973, 17, 608–618. [Google Scholar] [CrossRef]
- Stankus, E. On some generalized integers. Lith. Math. J. 1996, 36, 115–123. [Google Scholar] [CrossRef]
- Zhang, W.-B. Density and O-density of Beurling generalized integers. J. Number Theory 1988, 30, 120–139. [Google Scholar] [CrossRef]
- Hilberdink, T.W.; Lapidus, M.L. Beurling zeta functions, generalised primes, and fractal membranes. Acta Appl. Math. 2006, 94, 21–48. [Google Scholar] [CrossRef]
- Schlage-Puchta, J.-C.; Vindas, J. The prime number theorem for Beurling’s generalized numbers. New cases. Acta Arith. 2012, 153, 299–324. [Google Scholar] [CrossRef]
- Debruyne, G.; Schlage-Puchta, J.-C.; Vindas, J. Some examples in the theory of Beurling’s generalized prime numbers. Acta Arith. 2016, 176, 101–129. [Google Scholar] [CrossRef]
- Hall, R.S. The prime number theorem for generalized primes. J. Number Theory 1972, 4, 313–320. [Google Scholar] [CrossRef]
- Révész, S.G. Density estimates for the zeros of the Beurling ζ function in the critical strip. Mathematika 2022, 68, 1045–1072. [Google Scholar] [CrossRef]
- Matsumoto, K. A survey on the theory of universality for zeta and L-functions. In Number Theory: Plowing and Starring Through High Wave Forms, Proceedings of the 7th China-Japan Seminar (Fukuoka 2013), Fukuoka, Japan, 28 October–1 November 2013; Series on Number Theory and Its Applications; Kaneko, M., Kanemitsu, S., Liu, J., Eds.; World Scientific Publishing Co.: New Jersey, NJ, USA; London, UK; Singapore; Bejing, China; Shanghai, China; Hong Kong; Taipei, Taiwan; Chennai, India, 2015; pp. 95–144. [Google Scholar]
- Steuding, J. Value-Distribution of L-Functions; Lecture Notes Math; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007; Volume 1877. [Google Scholar]
- Voronin, S.M. Theorem on the “universality” of the Riemann zeta-function. Math. USSR Izv. 1975, 9, 443–453. [Google Scholar] [CrossRef]
- Karatsuba, A.A.; Voronin, S.M. The Riemann Zeta-Function; Walter de Gruiter: Berlin, Germany; New York, NY, USA, 1992. [Google Scholar]
- Bagchi, B. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. Ph.D. Thesis, Indian Statistical Institute, Calcutta, India, 1981. [Google Scholar]
- Gonek, S.M. Analytic Properties of Zeta and L-Functions. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1975. [Google Scholar]
- Laurinčikas, A. Limit Theorems for the Riemann Zeta-Function; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1996. [Google Scholar]
- Laurinčikas, A.; Garunkštis, R. The Lerch Zeta-Function; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2002. [Google Scholar]
- Drungilas, P.; Garunkštis, R.; Novikas, A. Second moment of the Beurling zeta-function. Lith. Math. J. 2019, 59, 317–337. [Google Scholar] [CrossRef]
- Tychonoff, A. Über einen Funktionenraum. Math. Ann. 1935, 111, 762–766. [Google Scholar] [CrossRef]
- Billingsley, P. Convergence of Probability Measures; John Wiley & Sons: New York, NY, USA, 1968. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laurinčikas, A. On Value Distribution of Certain Beurling Zeta-Functions. Mathematics 2024, 12, 459. https://doi.org/10.3390/math12030459
Laurinčikas A. On Value Distribution of Certain Beurling Zeta-Functions. Mathematics. 2024; 12(3):459. https://doi.org/10.3390/math12030459
Chicago/Turabian StyleLaurinčikas, Antanas. 2024. "On Value Distribution of Certain Beurling Zeta-Functions" Mathematics 12, no. 3: 459. https://doi.org/10.3390/math12030459
APA StyleLaurinčikas, A. (2024). On Value Distribution of Certain Beurling Zeta-Functions. Mathematics, 12(3), 459. https://doi.org/10.3390/math12030459