Next Article in Journal
Machine-Learning-Based Approaches for Multi-Level Sentiment Analysis of Romanian Reviews
Previous Article in Journal
Homological Landscape of Human Brain Functional Sub-Circuits
Previous Article in Special Issue
Gram Points in the Universality of the Dirichlet Series with Periodic Coefficients
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Value Distribution of Certain Beurling Zeta-Functions

by
Antanas Laurinčikas
Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
Mathematics 2024, 12(3), 459; https://doi.org/10.3390/math12030459
Submission received: 25 December 2023 / Revised: 25 January 2024 / Accepted: 29 January 2024 / Published: 31 January 2024
(This article belongs to the Special Issue Analytic Methods in Number Theory and Allied Fields)

Abstract

:
In this paper, the approximation of analytic functions by shifts  ζ P ( s + i τ )  of Beurling zeta-functions  ζ P ( s )  of certain systems  P  of generalized prime numbers is discussed. It is required that the system of generalized integers  N P  generated by  P  satisfies  m x , m N 1 = a x + O ( x δ ) a > 0 0 δ < 1 , and the function  ζ P ( s )  in some strip lying in  σ ^ < σ < 1 σ ^ > δ , which has a bounded mean square. Proofs are based on the convergence of probability measures in some spaces.

1. Introduction

The Riemann zeta-function  ζ ( s ) s = σ + i t , is defined, for  σ > 1  by
ζ ( s ) = k = 1 1 k s = q 1 1 q s 1 ,
where the product is taken over prime numbers q, has a meromorphic continuation to the complex plane with the unique simple pole  s = 1 Re s = 1 ζ ( s ) = 1  (see, for example, [1]), and has several generalizations. One of them is Beurling zeta-functions.
The system  P  of real numbers  1 < p 1 p 2 p n p n  as  n , is called generalized prime numbers. From numbers of system  P , the system  N P  of generalized integers
p 1 α 1 p 2 α 2 p r α r , α j N 0 = N { 0 } , j = 1 , , r , ,
is obtained. As in the theory of rational primes q, the main attention is devoted to asymptotics of the function
π P ( x ) = p x p P 1 , x .
Together with  π P ( x ) , the number of generalized integers m
N P ( x ) = m x m N P 1 , x ,
is considered. The above sums are taken by counting multiplicities of p and m, respectively. By the Landau result [2], it is known that the estimate
N P ( x ) = a x + O x δ , 0 δ < 1 , a > 0 ,
implies
π P ( x ) = 2 x d u log u + O x e c log x , c > 0 .
The distribution of generalized numbers was studied by Beurling [3], Borel [4], Diamond [5,6,7], Mallavin [8], Nyman [9], Ryavec [10], Stankus [11], Zhang [12], Hilberdink and Lapidus [13], Schlage-Puhta and Vindas [14], Debruyne, Schlage-Puhta and Vindas [15], and others. Among other problems studied in the above works, the central place is occupied by the relation between
N P ( x ) = a x + O x ( log   x ) α , α > 0 ,
and
π P ( x ) = 2 x d u log   u + O x ( log   x ) β , β > 0 .
For example, in [9], it was obtained that the above estimates with arbitrary  α  and  β  are equivalent. The papers [6,8,16] are devoted to formulae for  π P ( x ) , with the remainder term of order  O ( x e c 1 ( log x ) β )  implied by  N P ( x )  with the remainder term  O ( x e c 2 ( log x ) α ) . Beurling proved [3] that the asymptotics
π P ( x ) x log x , x ,
follows from (2) with  α > 3 / 2 , and this is not true with  α = 3 / 2  for all systems of generalized primes. Moreover, for the investigation of  π P ( x ) , he introduced the zeta-functions  ζ P ( s )  defined in some half-planes by the Euler product
ζ P ( s ) = p P 1 1 p s 1 ,
or by the Dirichlet series
ζ P ( s ) = m N P 1 m s .
The convergence of the latter objects depends on the system  P  of generalized primes.
It is easily seen that in case (1), the series for  ζ P ( s )  is absolutely convergent for  σ > 1 . Actually, the partial summation formula shows that
m x m N P 1 m s = 1 x s N P ( x ) + s 1 x N P ( x ) x s + 1 d x .
Since, for  σ > 1 , the integral
1 N P ( x ) x s + 1 d x
is absolutely and uniformly convergent for  σ 1 + ε ε > 0 , and  x s N P ( x ) = o ( 1 ) , so from (4) we have
ζ P ( s ) = s 1 N P ( x ) x s + 1 d x .
Thus,  ζ P ( s )  is analytic in the half-plane  σ > 1 . Moreover, in this half-plane,
p P 1 1 p s 1 = m N P 1 m s .
Now, the functions  ζ P ( s )  are called Beurling zeta-functions.
As it was observed by Beurling [3], it suffices to consider  N P ( x )  in place of  N P ( x δ ) δ 1 , because the latter case reduces after normalization to  N P ( x ) .
An important problem is the analytic continuation of the function  ζ P ( s ) . Suppose that (1) is true. Then, (5) implies
ζ P ( s ) = a s s 1 + s 1 r ( x ) x s + 1 d x , r ( x ) = O ( x δ ) , δ < 1 ,
the latter integral being absolutely and uniformly convergent for  σ δ + ε ε > 0 . Therefore, the function  ζ P ( s )  has analytic continuation to the half-plane  σ > δ , except for a simple pole at the point  s = 1  with residue a.
Much attention is devoted to analytic continuation for the function  ζ P ( s )  in [13]. For this, the generalized von Mongoldt function
Λ P ( m ) = log p if m = p k , p P , k N , 0 otherwise ,
and
ψ P ( x ) = m x m N P Λ P ( m )
are used. Let
ψ P ( x ) = x + O ( x α + ε ) , α [ 0 , 1 ) , ε > 0 .
Then, in [13], it is proved that  ζ P ( s )  has an analytic continuation to the half-plane  σ > α , except for a simple pole at the point  s = 1 . Under certain additional conditions, the latter estimate is necessary as well.
There is another method for the analytic continuation of  ζ P ( s )  cultivated in [13]. However, for our aims, we limit ourselves by the analytic continuation to the half-plane  σ > δ  because, throughout the paper, we suppose the validity of the axiom (1).
The paper [17] is devoted to zero-distribution of  ζ P ( s ) , where various zero-density results corresponding to those of  ζ ( s )  are given. We stress that in [17], the Beurling prime number theorem [3] was strengthened, and it was proved that asymptotics (3) is implied by the estimate of Cesàro type
1 x N P ( t ) a t t 1 t x m d t = O x ( log x ) α , α > 3 2 , x ,
with some  m N .
In the present paper, differently from the cited above works, including [14,17], that are devoted to prime number theorem, analytic continuation and zeros of  ζ P ( s ) , we focus on the approximation properties of the Beurling zeta-functions. More precisely, we consider the approximation of a set of analytic functions  f ( s )  by shifts  ζ P ( s + i τ ) τ R , i.e., such  τ  that, for some compact sets K and  ε > 0 ,
sup s K ζ P ( s + i τ ) f ( s ) < ε .
The case of the Riemann zeta-function shows that the results of such a type have serious theoretical (functional independence, zero-distribution, moment problem, …) and practical (approximation theory, quantum mechanics) applications, see [18]. Moreover, investigations of the approximation of analytic functions by zeta-functions have an impact on the Linnik–Ibragimov conjecture on the universality of the Dirichlet series; see Section 1.6 of [19].
For our aims, the mean square estimate for  ζ P ( s )  is needed. Let
M ( σ , T ) = def 0 T ζ P ( σ + i t ) 2 d t ,
and  σ ^ = inf { σ : M ( σ , T ) σ T , σ > δ } . Suppose that  σ ^ < 1 , and define  D P = { s C : σ ^ < σ < 1 } . Here, and in what follows, the notation  z ε y z C y > 0  is a synonym of  z = O ( y )  with implied constant depending on  ε . Denote by  H ( D P )  the space of analytic on  D P  functions endowed with the topology of uniform convergence on compacta.
It is well-known that the Riemann zeta-function  ζ ( s )  and some other zeta-functions are universal, i.e., their shifts  ζ ( s + i τ ) τ R  are approximately defined in certain strip analytic functions; see [18,19,20,21,22,23,24,25] for results and problems. We believe that the function  ζ P ( s )  for some systems of generalized prime numbers  P  also has similar approximation properties. However, every case of system  P  requires a separate investigation. In the paper, we propose the following result for the approximation of analytic functions by shifts  ζ P ( s + i τ ) . In what follows,  m L A  denotes the Lebesgue measure of  A R . The main result of the paper is the following theorem.
Theorem 1.
Assume that the system  P  satisfies the axiom (1). Then, there exists a non-empty closed subset  F P H ( D P ) , such that, for all compact sets  K D P f ( s ) F P  and  ε > 0 ,
lim inf T 1 T m L τ [ 0 , T ] : sup s K ζ P ( s + i τ ) f ( s ) < ε > 0 .
In addition, the limit
lim T 1 T m L τ [ 0 , T ] : sup s K ζ P ( s + i τ ) f ( s ) < ε
exists and is positive for all, but at most countably many,  ε > 0 .
Theorem 1 will be proved in Section 5.
Let  B ( X )  stand for the Borelean  σ -field of the topological space  X , and, for  A B ( H ( D P ) ) ,
P T , P ( A ) = 1 T m L τ [ 0 , T ] : ζ P ( s + i τ ) A .
Theorem 1 will be derived from the next theorem on weak convergence of  P T , P  as  T .
Theorem 2.
Suppose that the system  P  satisfies the axiom (1). Then  P T , P , as  T , weakly converges to a certain measure  P P  on  ( H ( D P ) , B ( H ( D P ) ) ) .
Theorem 2 will be proved in Section 4.
We recall some examples connected to the hypotheses of Theorems 1 and 2.
A problem of the validity of axiom (1) is not easy. The following interesting example is known; see [13]. Let the system of generalized integers  N P  be generated by the system
P = ( 2 , 3 , 5 , 5 , 7 , 11 , 13 , 13 , ) ,
i.e.,  P  includes 2, rational primes  q 1 ( mod 4 )  with multiplicity 2, and  q  with rational primes  q 3 ( mod 4 ) . Then, it is known that
N P ( x ) = π 4 x + O x 23 / 73 .
In [11], the system  P  of shifted rational primes  q = π ( r ) + 1  with  r > 0 π ( r ) = q r 1 , was considered, and it was obtained that
N P ( x ) = a x + O x exp 1 c log 3 x log 2 x 1 2 log x log 2 x ,
where  log n x = log log n x a > 0 c > 0 . This shows that the estimate (1), even for a comparatively simple system  P , is difficult to reach.
Write generalized numbers in another form
1 = ν 1 < ν 2 <
with corresponding multiplicities  1 = a 1 , a 2 , . Then, we have
N P ( x ) = ν m x a m ,
and
ζ P ( s ) = m = 1 a m ν m s .
In [26], the following result has been obtained. Suppose that (1) is true, and  ν m + 1 ν m exp { ν m κ }  with every  κ > 0 . Then, for  σ > ( 1 + δ ) / 2 ,
lim T 1 2 T T T ζ P ( σ + i t ) 2 d t = m = 1 a m 2 ν m 2 σ .
This implies that  σ ^ = ( 1 + δ ) / 2 < 1  in this case.
We divide the proof of Theorem 2 into parts. We start with weak convergence of probability measures in comparatively simple spaces and finish in the space  H ( D P ) .

2. Case of Compact Group

Define the set
Ω = p P { s C : | s | = 1 } .
The elements of  Ω  are all functions  ω : P { s C : | s | = 1 } . We equipped  Ω  with the product topology and operation of pointwise multiplication. Since the unit circle is a compact set, by the Tikhonov theorem [27],  Ω  is a compact topological group. For  A B ( Ω ) , set
P T , P Ω ( A ) = 1 T m L τ [ 0 , T ] : p i τ : p P A .
Lemma 1.
P T , P Ω  weakly converges to a certain measure  P P Ω  on  ( Ω , B ( Ω ) )  as  T .
Proof. 
It suffices to show that the Fourier transform of  P T , P Ω  converges to a certain continuous function. Characters of  Ω  have the form
p P ω k p ( p ) ,
where  ω ( p )  denotes the pth component of  ω Ω , and  k p  are integer rational numbers, where only a finite number of them are not zero. Therefore,
F T , P ( k ) = 1 T 0 T p P p i τ k p d τ ,
where  k = ( k p : p P ) , and the star ∗ shows that  k p 0  for a finite set of generalized primes p, is the Fourier transform of the measure  P T , P Ω . Define two sets of  k :
K 1 = k : p P k p log p = 0 , K 2 = k : p P k p log p 0 .
Then, we have
F T , P ( k ) = 1 if k K 1 , 1 exp i T p P k p log p i T 1 exp i p P k p log p if k K 2 .
Thus,
lim T F T , P ( k ) = 1 if k K 1 , 0 if k K 2 .
The limit function is continuous in the discrete topology; therefore, this implies that  P T , P Ω  weakly converges to the measure  P P Ω  on  ( Ω , B ( Ω ) )  given by the Fourier transform  F P ( k ) ,
F P ( k ) = 1 if k K 1 , 0 if k K 2 .
Remark 1.
If the system  P  is linearly independent over the field of rational numbers, then
F P ( k ) = 1 if k = ( 0 ) , 0 if k ( 0 ) .
In this case, the limit measure  P P Ω  is the Haar measure  P H , which is invariant with respect to translations by elements  ω Ω , i.e., for every  ω Ω  and  A B ( Ω ) ,
P H ( A ) = P H ( ω A ) = P H ( A ω ) .
Obviously, in this case, the numbers of  P  must be different.
Lemma 1 is a starting point to consider limit distributions in space  H ( D P ) . The simplest case is of an absolutely convergent Dirichlet series. Let  η > 1 σ ^  be fixed. For  m N P  and  n N , set
a n ( m ) = exp m n η ,
and
ζ n , P ( s ) = m N P a n ( m ) m s .
It is not difficult to see that the series for  ζ n , P ( s )  is absolutely convergent, say, for  σ > 0 . Thus,  ζ n , P ( s )  is an element of  H ( D P ) . For  A B ( H ( D P ) ) , define
P T , n , P ( A ) = 1 T m L τ [ 0 , T ] : ζ P , n ( s + i τ ) A .
Lemma 2.
Assume that the system  P  satisfies the axiom (1). Then,  P T , n , P  weakly converges to a certain measure  P n , P  on  ( H ( D P ) , B ( H ( D P ) ) )  as  T .
Proof. 
Extend the function  ω ( p )  to the set  N P  by using the equality
ω ( m ) = ω a 1 ( p 1 ) ω a r ( p r )
for  m = p 1 a 1 p r a r . Consider the mapping  h n , P : Ω H ( D P )  given by
h n , P ( ω ) = m N P ω ( m ) a n ( m ) m s , ω Ω .
The latter definition implies that
h n , P p i τ : p P = m N P a n ( m ) m s + i τ = ζ n , P ( s + i τ ) .
Moreover, the absolute convergence of the series
m N P ω ( m ) a n ( m ) m s
for  σ > 0  ensures the continuity of the mapping  h n , P . In view of (6), we have
P T , n , P ( A ) = 1 T m L τ [ 0 , T ] : p i τ : p P h n , P 1 A = P T , P Ω h n , P 1 A
for all  A B ( H ( D P ) ) . This shows that  P T , n , P = P T , P Ω h n , P 1 , where
P T , P Ω h n , P 1 ( A ) = P T , P Ω h n , P 1 A , A B ( H ( D P ) ) ,
and  h n , P 1 A  denotes the preimage of the set A. These remarks, Lemma 1, and the preservation of weak convergence under continuous mappings (see, for example, [28], Chapter 5) prove that  P T , n , P , as  T  weakly converges to the measure  P n , P = h n , P 1 P P Ω , where  P P Ω  is from Lemma 1.  □

3. Some Estimates

To pass from the function  ζ n , P ( s )  to  ζ P ( s ) , we need some estimates between these functions. We start with an integral representation for  ζ n , P ( s ) . As usual, let  Γ ( s )  stand for the Euler gamma-function, and, for  n N , define
l n ( s ) = η 1 Γ η 1 s n s ,
where the number  η  is from the definition of  a n ( m ) .
Lemma 3.
Suppose that axiom (1) is valid. Then, for  s D , the representation
ζ n , P ( s ) = 1 2 π i η i η + i ζ P ( s + z ) l n ( z ) d z
holds.
Proof. 
Let a and b be positive numbers. Then, the classical Mellin formula
1 2 π i a i a + i Γ ( z ) b z d z = e b
is valid. Therefore, for  m N P ,
1 2 π i η i η + i m z l n ( z ) d z = 1 2 π i η i η + i Γ z η m n ( z / η ) η d z η = a n ( m ) .
Hence,
ζ n , P ( s ) = m N P a n ( m ) m s = 1 2 π i m N P η i η + i 1 m s + z l n ( z ) d z = 1 2 π i η i η + i m N P 1 m s + z l n ( z ) d z .
Since  η > 1 σ ^ , we have  Re ( s + z ) > 1 . Moreover, the properties of the function  Γ ( s )  ensure the change in order integration and summation. Thus, (8) implies the representation of the lemma.  □
There is a sequence of compact embedded sets  { K l : l N } D P D P = l = 1 K l , such that every compact set  K D P  lies in some  K l . Then,
ρ ( g 1 , g 2 ) = l = 1 2 l sup s K l | g 1 ( s ) g 2 ( s ) | 1 + sup s K l | g 1 ( s ) g 2 ( s ) | , g 1 , g 2 H ( D P ) ,
is a metric in  H ( D P )  inducing its topology of uniform convergence on compacta.
Lemma 4.
Suppose that axiom (1) is valid. Then,
lim n lim sup T 1 T 1 T ρ ζ P ( s + i τ ) , ζ n , P ( s + i τ ) = 0 .
Proof. 
By the formula for  ρ , it is sufficient to prove that, for every compact set  K D P ,
lim n lim sup T 1 T 1 T sup s K ζ P ( s + i τ ) ζ n , P ( s + i τ ) = 0 .
Thus, fix a compact set  K D P . Then, there is  ε > 0  satisfying  σ ^ + ε σ 1 ε / 2  for  σ + i t K . We apply Lemma 3. Let  η = 1 , and  η 1 = σ ^ + ε / 2 σ  with above  σ . Then  η 1 < 0 . The integrand in (7) possesses a simple pole at  z = 0  (a pole of  Γ ( s ) ), and a simple pole at  z = 1 s  (a pole of  ζ P ( s + z ) ). Actually, it is obvious that  0 ( η 1 , η )  and  1 σ ( η 1 , η ) . Moreover, since  η 1 σ ^ + ε / 2 1 + ε / 2 σ ^ 1 + ε > 1 , the pole  z = 1  of  Γ ( s )  does not lie in the strip  η 1 < Re z < η .
Now, the residue theorem and Lemma 3 yields, for  s K ,
ζ n , P ( s ) ζ P ( s ) = 1 2 π i η 1 i η 1 + i ζ P ( s ) l n ( z ) d z + Res z = 1 s ζ P ( s + z ) l n ( z ) .
Hence, for  s K ,
ζ n , P ( s + i τ ) ζ P ( s + i τ ) = 1 2 π ζ P σ ^ + ε 2 + i τ + i t + i u l n σ ^ + ε 2 σ + i u d u + a l n ( 1 s i τ ) = 1 2 π ζ P σ ^ + ε 2 + i τ + i u l n σ ^ + ε 2 s + i u d u + a l n ( 1 s i τ ) ζ P σ ^ + ε 2 + i τ + i u sup s K l n σ ^ + ε 2 s + i u d u + sup s K l n ( 1 s i τ ) .
Therefore,
1 T 0 T sup s K ζ P ( s + i τ ) ζ n , P ( s + i τ ) d τ 1 T 0 T ζ P σ ^ + ε 2 + i τ + i u d τ sup s K l n ( 1 s + i u ) d u + 1 T 0 T sup s K l n ( 1 s i τ ) d τ = def J 1 + J 2 .
By the definition of  σ ^ ,
0 T ζ P σ ^ + ε 2 + i τ 2 d τ ε T .
Therefore, in view of the Cauchy–Schwarz inequality,
0 T ζ P σ ^ + ε 2 + i τ + i u d τ T 0 T ζ P σ ^ + ε 2 + i τ + i u 2 d τ 1 / 2 T | u | T + | u | ζ P σ ^ + ε 2 + i τ 2 d τ 1 / 2 ε T ( T + | u | ) 1 / 2 ε T T + u ε T 1 + u .
The most important ingredient of the function  l n ( s )  is  Γ ( s )  and is estimated as
Γ ( σ + i t ) exp { c | t | } , c > 0 .
Therefore, for  s K ,
l n σ ^ + ε 2 + 1 s + i u n σ ^ + ε / 2 σ exp { c | u t | } K n ε / 2 exp { c 1 | u | } , c 1 > 0 .
This, together with (11), yields
J 1 K , ε n ε / 2 + 1 + u exp { c 1 | u | } d u ε , K n ε / 2 .
Similarly, as above, we obtain that, for  s K ,
l n ( 1 s i τ ) n 1 σ exp { c | t + τ | } K n 1 σ ^ ε exp { c 2 | τ | } , c 2 > 0 .
Therefore,
J 2 K n 1 σ ^ ε 1 T 0 T exp { c 2 | τ | } d τ K n 1 σ ^ ε T 1 .
The latter bound, (12) and (10), prove (9). The lemma is proved.  □

4. Proof of Theorem 2

We derive Theorem 2 from Lemmas 2 and 4 and the following statement (see, for example, [28], Theorem 4.2) is applied to the case  H ( D P ) .
Lemma 5.
Assume that  ξ n k  and  ξ ^ n n , k N , are  H ( D P ) -valued random elements given on a space  ( X , B ( X ) , ν ) . Let
ξ n k n D ξ k , ξ k k D ξ ,
and for  ε > 0 ,
lim k lim sup n ν ρ ξ ^ n , ξ n k ε = 0 ,
where  D  stands for the convergence in distribution. Then  ξ ^ n n D ξ .
We remind the reader that  P n , P  is from Lemma 2. Using Lemma 5 requires some convergence properties for  P n , P . Recall that the sequence  { P n , P : n N }  is tight if, for every  ε > 0 , there is a compact set  K H ( D P )  such that
P n , P ( K ) > 1 ε
with all  n N .
Lemma 6.
Suppose that the system  P  satisfies the axiom (1). Then, the sequence  { P n , P : n N }  is tight.
Proof. 
Let  K l  be a fixed compact set in the definition of  ρ . Then, the Cauchy integral theorem, for  s K l , implies
ζ P ( s + i τ ) = 1 2 π i L ζ P ( z + i τ ) z s d z ,
where  L  is a closed simple curve lying in D and enclosing the set  K l . Hence,
sup s K l ζ P ( s + i τ ) 2 L | d z | | z s | 2 L ζ P ( z + i τ ) 2 | d z | K l L ζ P ( Re z + i Im z + i τ ) 2 | d z | .
Therefore,
1 T 0 T sup s K l ζ P ( s + i τ ) 2 d τ K l L 1 T 0 T ζ P ( Re z + i Im z + i τ ) 2 d τ | d z | K l 1 B l < .
From this, we have
lim sup T 1 T 0 T sup s K l ζ P ( s + i τ ) d τ B l .
Then, in view of (9),
sup n N lim sup T 1 T 0 T sup s K l ζ n , P ( s + i τ ) d τ sup n N lim sup T 1 T 0 T sup s K l ζ P ( s + i τ ) ζ n , P ( s + i τ ) d τ + lim sup T 1 T 0 T sup s K l ζ P ( s + i τ ) d τ C l < .
Let  β T  be the random variable on the space  ( Ω ^ , A , ν )  and uniformly distributed in  [ 0 , T ] . Define  H ( D P ) -valued random elements
ξ T , n = ξ T , n ( s ) = ζ n , P ( s + i β T )
and  ξ n = ξ n ( s )  having the distribution  P n , P . We fix  ε > 0 , and set  V = V l = 2 l ε 1 C l . Then, in virtue of (13) and Lemma 2,
ν sup s K l ξ n ( s ) V l lim sup T ν sup s K l ξ T , n ( s ) V l sup n N lim sup T 1 V l 0 T sup s K l ζ n , P ( s + i τ ) d τ = ε 2 l
for all  n N . Let  K = h H ( D P ) : sup s K l | h ( s ) | V l , l N . Then, K is a compact set in  H ( D P ) , and, by (14),
P n , P ( K ) = 1 P n , P ( H ( D P ) K ) = 1 P n , P g ( s ) H ( D P ) : l : sup s K l | g ( s ) | V l = 1 P n , P l = 1 g ( s ) H ( D P ) : sup s K l | g ( s ) | V l 1 l = 1 P n , P g ( s ) H ( D P ) : sup s K l | g ( s ) V l = 1 l = 1 ν sup s K l | ξ n ( s ) | V l 1 ε l = 1 2 l = 1 ε
for all  n N . This proves the lemma.  □
Proof of Theorem 2.
We will apply Lemma 5. Since by Lemma 6, the sequence  { P n , P : n N }  is tight, it is relatively compact in virtue of the classical Prokhorov theorem; see, for example, [28], Theorem 6.1. This means that every subsequence of  { P n , P }  possesses a subsequent weak convergent to a probability measure on  ( H ( D P ) , B ( H ( D P ) ) ) . Thus, there is  { P n r , P } { P n , P }  and a probability measure  P P  on  ( H ( D P ) , B ( H ( D P ) ) )  such that  P n r , P  converges weakly to  P P  as  r . Using the notation of the proof of Lemma 6, we have
ξ n r r D P P .
Moreover, in view of Lemma 2,
ξ T , n T D ξ n .
Define one more  H ( D P ) -valued random element
ξ ^ T = ξ ^ T ( s ) = ζ P ( s + i β T ) .
Then Lemma 4 implies that, for every  ε > 0 ,
lim r lim sup T ν ρ ξ ^ T , ξ T , n ε = lim r lim sup T 1 T m L τ [ 0 , T ] : ρ ζ P ( s + i τ ) , ζ n r , P ( s + i τ ) ε lim r lim sup T 1 ε T 0 T ρ ζ P ( s + i τ ) , ζ n r , P ( s + i τ ) d τ = 0 .
This equality, together with (15) and (16), shows that for  ξ n r ξ T , n  and  ξ ^ T , the conditions of Lemma 5 are fulfilled. Therefore, the relation
ξ ^ T T D P P
holds, and this implies the weak convergence of  P T , P  to  P P  as  T . The proof is completed.  □

5. Proof of Theorem 1

Theorem 1 is a consequence of Theorem 2 and the equivalents of weak convergence.
We remind the reader that the support of the measure  P P  is a closed minimal set  S P H ( D P )  satisfying  P P ( S P ) = 1 . The set  S P  contains all  g H ( D P )  such that for any open neighborhood  G  of g, the inequality  P P ( G ) > 0  holds.
Proof of Theorem 1.
Let  F P  be the support of the limit measure  P P  in Theorem 2. Then,  F P  is a closed set, and  F P  because  P P ( F P ) = 1 . We will prove that the set  F P  has approximation properties of the theorem.
Suppose that  f ( s ) F P , and
G ε = h H ( D P ) : sup s K | h ( s ) f ( s ) | < ε ,
i.e.,  G ε  is an open neighborhood of an element  f ( s )  of the support  F P . Hence, by the support property,
P P ( G ε ) > 0 .
Moreover, using Theorem 2 and Theorem 2.1 of [28] with open sets implies the inequality
lim inf T P T , P ( G ε ) P P ( G ε ) .
Thus, the notations for  P T , P  and  G ε  lead to
lim inf T 1 T m L τ [ 0 , T ] : sup s K ζ P ( s + i τ ) f ( s ) < ε > 0 .
To prove the second statement of the theorem, we deal with continuity sets. We remind the reader that a set  A B ( X )  is a continuity set of a measure P on  ( X , B ( X ) )  if  P ( A ) = 0 , where  A  is the boundary of A.
The set  G ε  of the set  G ε  belongs to the set
h H ( D P ) : sup s K | h ( s ) f ( s ) | = ε .
Hence, the sets  G ε 1  and  G ε 2  for different  ε 1  and  ε 2  have no common elements. From this remark, it follows that  P P ( G ε ) > 0  for at most countably many values of  ε , or, in the above terminology, the set  G ε  is a continuity set of the measure  P P  for all but at most countably many  ε > 0 . Thus, Theorem 2 and Theorem 2.1 of [28] with continuity sets show that the limit
lim T P T , P ( G ε ) = P P ( G ε )
exists, and in view of (17), is positive for all but at most countably many  ε > 0 . This and the notations for  P T , P  and  G ε  give the second assertion of the theorem. The theorem is proved.  □

6. Conclusions

Every system  P  of real numbers  1 < p 1 p 2 p r lim n p n =  is called generalized prime numbers. We consider the zeta-function  ζ P ( s ) s = σ + i t  associated with the system  P . We assume that the system of generalized integers  N P  obtained from  P  satisfies the axiom
m x m N 1 = a x + O ( x δ ) , a > 0 , 0 δ < 1 .
Then, for  σ > 1 , the function  ζ P ( s )  is defined by
ζ P ( s ) = m N 1 m s = p P 1 1 p s 1 ,
and has analytic continuation to the region  δ < σ < 1 . Additionally, we suppose that  ζ P ( s )  has the bounded mean square
0 T ζ P ( σ + i t ) 2 d t σ T , T ,
for some  σ > σ ^  with some  δ < σ ^ < 1 .
We consider probabilistic and approximation properties of the function  ζ P ( s ) . We prove a limit theorem for  ζ P ( s )  in the space of analytic functions  H ( D P ) D P = { s C : σ ^ < σ < 1 } , i.e., that
1 T m L τ [ 0 , T ] : ζ P ( s + i τ ) A , A B ( H ( D P ) ) ,
converges weakly to a certain probability measure  P P  as  T . From this, we deduce that the shifts  ζ P ( s + i τ )  approximate a certain closed subset of  H ( D P ) .
For identification of the limit measure  P P  and universality of the function  ζ P ( s ) , some stronger restrictions for the system  P  are needed. We are planning to apply this in the future.

Funding

This research received no external funding.

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The author declares no conflicts of interest.

References

  1. Ivič, A. The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications; John Wiley & Sons: New York, NY, USA, 1985. [Google Scholar]
  2. Landau, E. Neuer Beweis des Primzahlsatzes und Beweis des Primidealsatzes. Math. Ann. 1903, 56, 645–670. [Google Scholar] [CrossRef]
  3. Beurling, A. Analyse de la loi asymptotique de la distribution des nombres premiers généralisés. I. Acta Math. 1937, 68, 225–291. [Google Scholar] [CrossRef]
  4. Borel, J.-P. Sur le prolongement des functions ζ associées a un système de nombres premiers généralisés de Beurling. Acta Arith. 1984, 43, 273–282. [Google Scholar] [CrossRef]
  5. Diamond, H.G. The prime number theorem for Beurling’s generalized numbers. J. Number Theory 1969, 1, 200–207. [Google Scholar] [CrossRef]
  6. Diamond, H.G. Asymptotic distribution of Beurling’s generalized integers. Illinois J. Math. 1970, 14, 12–28. [Google Scholar] [CrossRef]
  7. Diamond, H.G. When do Beurling generalized integers have a density? J. Reine Angew. Math. 1977, 295, 22–39. [Google Scholar]
  8. Malliavin, P. Sur la reste de la loi asymptotique de répartion des nombres premiers généralisés de Beurling. Acta Math. 1961, 106, 281–298. [Google Scholar] [CrossRef]
  9. Nyman, B. A general prime number theorem. Acta Math. 1949, 81, 299–307. [Google Scholar] [CrossRef]
  10. Ryavec, C. The analytic continuation of Euler products with applications to asymptotic formulae. Illinois J. Math. 1973, 17, 608–618. [Google Scholar] [CrossRef]
  11. Stankus, E. On some generalized integers. Lith. Math. J. 1996, 36, 115–123. [Google Scholar] [CrossRef]
  12. Zhang, W.-B. Density and O-density of Beurling generalized integers. J. Number Theory 1988, 30, 120–139. [Google Scholar] [CrossRef]
  13. Hilberdink, T.W.; Lapidus, M.L. Beurling zeta functions, generalised primes, and fractal membranes. Acta Appl. Math. 2006, 94, 21–48. [Google Scholar] [CrossRef]
  14. Schlage-Puchta, J.-C.; Vindas, J. The prime number theorem for Beurling’s generalized numbers. New cases. Acta Arith. 2012, 153, 299–324. [Google Scholar] [CrossRef]
  15. Debruyne, G.; Schlage-Puchta, J.-C.; Vindas, J. Some examples in the theory of Beurling’s generalized prime numbers. Acta Arith. 2016, 176, 101–129. [Google Scholar] [CrossRef]
  16. Hall, R.S. The prime number theorem for generalized primes. J. Number Theory 1972, 4, 313–320. [Google Scholar] [CrossRef]
  17. Révész, S.G. Density estimates for the zeros of the Beurling ζ function in the critical strip. Mathematika 2022, 68, 1045–1072. [Google Scholar] [CrossRef]
  18. Matsumoto, K. A survey on the theory of universality for zeta and L-functions. In Number Theory: Plowing and Starring Through High Wave Forms, Proceedings of the 7th China-Japan Seminar (Fukuoka 2013), Fukuoka, Japan, 28 October–1 November 2013; Series on Number Theory and Its Applications; Kaneko, M., Kanemitsu, S., Liu, J., Eds.; World Scientific Publishing Co.: New Jersey, NJ, USA; London, UK; Singapore; Bejing, China; Shanghai, China; Hong Kong; Taipei, Taiwan; Chennai, India, 2015; pp. 95–144. [Google Scholar]
  19. Steuding, J. Value-Distribution of L-Functions; Lecture Notes Math; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007; Volume 1877. [Google Scholar]
  20. Voronin, S.M. Theorem on the “universality” of the Riemann zeta-function. Math. USSR Izv. 1975, 9, 443–453. [Google Scholar] [CrossRef]
  21. Karatsuba, A.A.; Voronin, S.M. The Riemann Zeta-Function; Walter de Gruiter: Berlin, Germany; New York, NY, USA, 1992. [Google Scholar]
  22. Bagchi, B. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. Ph.D. Thesis, Indian Statistical Institute, Calcutta, India, 1981. [Google Scholar]
  23. Gonek, S.M. Analytic Properties of Zeta and L-Functions. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1975. [Google Scholar]
  24. Laurinčikas, A. Limit Theorems for the Riemann Zeta-Function; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1996. [Google Scholar]
  25. Laurinčikas, A.; Garunkštis, R. The Lerch Zeta-Function; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2002. [Google Scholar]
  26. Drungilas, P.; Garunkštis, R.; Novikas, A. Second moment of the Beurling zeta-function. Lith. Math. J. 2019, 59, 317–337. [Google Scholar] [CrossRef]
  27. Tychonoff, A. Über einen Funktionenraum. Math. Ann. 1935, 111, 762–766. [Google Scholar] [CrossRef]
  28. Billingsley, P. Convergence of Probability Measures; John Wiley & Sons: New York, NY, USA, 1968. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Laurinčikas, A. On Value Distribution of Certain Beurling Zeta-Functions. Mathematics 2024, 12, 459. https://doi.org/10.3390/math12030459

AMA Style

Laurinčikas A. On Value Distribution of Certain Beurling Zeta-Functions. Mathematics. 2024; 12(3):459. https://doi.org/10.3390/math12030459

Chicago/Turabian Style

Laurinčikas, Antanas. 2024. "On Value Distribution of Certain Beurling Zeta-Functions" Mathematics 12, no. 3: 459. https://doi.org/10.3390/math12030459

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop