Deep Learning for Motion Artifact-Suppressed OCTA Image Generation from Both Repeated and Adjacent OCT Scans
Abstract
:1. Introduction
2. Materials and Methods
2.1. OCTA Data Preparation
2.2. OCTA Data Preprocessing
2.2.1. Raw Label OCTA Image Reconstruction
2.2.2. Label OCTA Image Preparation and Image Fusion Experiment
2.3. OCTA Image Generation Using Deep Learning
2.3.1. Deep Learning NETWORK Architecture
2.3.2. Loss Function
2.3.3. Models and Training Schemes
2.3.4. Implementation
2.4. Evaluation Metrics
3. Results
3.1. Results for Label OCTA Image Fusion
3.2. Results for Deep Learning OCTA Image Generation
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A. Optical Coherence Tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [PubMed]
- Fercher, A.F. Optical Coherence Tomography—Development, Principles, Applications. Z. Med. Phys. 2010, 20, 251–276. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.L.; Wang, R.K. Optical Coherence Tomography Based Angiography. Biomed. Opt. Express 2017, 8, 1056–1082. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F.; Fujimoto, J.G.; Waheed, N.K.; Sadda, S.R.; Staurenghi, G. Optical Coherence Tomography Angiography. Prog. Retin. Eye Res. 2018, 64, 1–55. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Zhou, K.; Ibbotson, S.H.; Wang, R.K.; Li, C.; Huang, Z. A Novel Automatic 3D Stitching Algorithm for Optical Coherence Tomography Angiography and Its Application in Dermatology. J. Biophotonics 2021, 14, e202100152. [Google Scholar] [CrossRef] [PubMed]
- Baran, U.; Wang, R.K. Review of Optical Coherence Tomography Based Angiography in Neuroscience. Neurophotonics 2016, 3, 010902. [Google Scholar] [CrossRef]
- Swanson, E.A.; Fujimoto, J.G. The Ecosystem That Powered the Translation of OCT from Fundamental Research to Clinical and Commercial Impact. Biomed. Opt. Express 2017, 8, 1638–1664. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Alam, M.N.; Le, D.; Toslak, D. Quantitative Optical Coherence Tomography Angiography: A Review. Exp. Biol. Med. 2020, 245, 301–312. [Google Scholar] [CrossRef]
- Arya, M.; Rashad, R.; Sorour, O.; Moult, E.M.; Fujimoto, J.G.; Waheed, N.K. Optical Coherence Tomography Angiography (OCTA) Flow Speed Mapping Technology for Retinal Diseases. Expert. Rev. Med. Devices 2018, 15, 875–882. [Google Scholar] [CrossRef]
- Jia, Y.; Bailey, S.T.; Hwang, T.S.; McClintic, S.M.; Gao, S.S.; Pennesi, M.E.; Flaxel, C.J.; Lauer, A.K.; Wilson, D.J.; Hornegger, J.; et al. Quantitative Optical Coherence Tomography Angiography of Vascular Abnormalities in the Living Human Eye. Proc. Natl. Acad. Sci. USA 2015, 112, E2395–E2402. [Google Scholar] [CrossRef]
- Kashani, A.H.; Chen, C.L.; Gahm, J.K.; Zheng, F.; Richter, G.M.; Rosenfeld, P.J.; Shi, Y.; Wang, R.K. Optical Coherence Tomography Angiography: A Comprehensive Review of Current Methods and Clinical Applications. Prog. Retin. Eye Res. 2017, 60, 66–100. [Google Scholar] [CrossRef] [PubMed]
- Gorczynska, I.; Migacz, J.V.; Zawadzki, R.J.; Capps, A.G.; Werner, J.S. Comparison of Amplitude-Decorrelation, Speckle-Variance and Phase-Variance OCT Angiography Methods for Imaging the Human Retina and Choroid. Biomed. Opt. Express 2016, 7, 911–942. [Google Scholar] [CrossRef] [PubMed]
- Hormel, T.T.; Huang, D.; Jia, Y. Artifacts and Artifact Removal in Optical Coherence Tomographic Angiography. Quant. Imaging Med. Surg. 2021, 11, 1120–1133. [Google Scholar] [CrossRef] [PubMed]
- Braaf, B.; Vienola, K.V.; Sheehy, C.K.; Yang, Q.; Vermeer, K.A.; Tiruveedhula, P.; Arathorn, D.W.; Roorda, A.; de Boer, J.F. Real-Time Eye Motion Correction in Phase-Resolved OCT Angiography with Tracking SLO. Biomed. Opt. Express 2013, 4, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.; Sim, R.; Chua, J.; Wong, D.W.K.; Yao, X.; Garhoefer, G.; Schmidl, D.; Werkmeister, R.M.; Schmetterer, L. Approaches to Quantify Optical Coherence Tomography Angiography Metrics. Ann. Transl. Med. 2020, 8, 1205. [Google Scholar] [CrossRef] [PubMed]
- Uji, A.; Balasubramanian, S.; Lei, J.; Baghdasaryan, E.; Al-Sheikh, M.; Sadda, S.R. Impact of Multiple En Face Image Averaging on Quantitative Assessment from Optical Coherence Tomography Angiography Images. Ophthalmology 2017, 124, 944–952. [Google Scholar] [CrossRef]
- Hormel, T.T.; Hwang, T.S.; Bailey, S.T.; Wilson, D.J.; Huang, D.; Jia, Y. Artificial Intelligence in OCT Angiography. Prog. Retin. Eye Res. 2021, 85, 100965. [Google Scholar] [CrossRef] [PubMed]
- Kadomoto, S.; Uji, A.; Muraoka, Y.; Akagi, T.; Tsujikawa, A. Enhanced Visualization of Retinal Microvasculature in Optical Coherence Tomography Angiography Imaging Via Deep Learning. J. Clin. Med. 2020, 9, 1322. [Google Scholar] [CrossRef]
- Xu, J.; Yuan, X.; Huang, Y.; Qin, J.; Lan, G.; Qiu, H.; Yu, B.; Jia, H.; Tan, H.; Zhao, S. Deep-Learning Visualization Enhancement Method for Optical Coherence Tomography Angiography in Dermatology. J. Biophotonics 2023, 16, e202200366. [Google Scholar] [CrossRef]
- Xu, Y.; Su, Y.; Hua, D.; Heiduschka, P.; Zhang, W.; Cao, T.; Liu, J.; Ji, Z.; Eter, N. Enhanced Visualization of Retinal Microvasculature Via Deep Learning on OCTA Image Quality. Dis. Markers 2021, 2021, 1373362. [Google Scholar] [CrossRef]
- Liao, J.; Yang, S.; Zhang, T.; Li, C.; Huang, Z. Fast Optical Coherence Tomography Angiography Image Acquisition and Reconstruction Pipeline for Skin Application. Biomed. Opt. Express 2023, 14, 3899–3913. [Google Scholar] [CrossRef]
- Gao, M.; Guo, Y.; Hormel, T.T.; Sun, J.; Hwang, T.S.; Jia, Y. Reconstruction of High-Resolution 6 X 6-mm OCT Angiograms Using Deep Learning. Biomed. Opt. Express 2020, 11, 3585–3600. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Hormel, T.T.; Wang, J.; Guo, Y.; Bailey, S.T.; Hwang, T.S.; Jia, Y. An Open-Source Deep Learning Network for Reconstruction of High-Resolution OCT Angiograms of Retinal Intermediate and Deep Capillary Plexuses. Transl. Vis. Sci. Technol. 2021, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Kim, J.; Choi, W.J.; Kim, C.; Lee, S. Integrated Deep Learning Framework for Accelerated Optical Coherence Tomography Angiography. Sci. Rep. 2022, 12, 1289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yang, D.; Cheung, C.Y.; Chen, H. Frequency-Aware Inverse-Consistent Deep Learning for OCT Angiogram Super-Resolution. In Proceedings of the Medical Image Computing and Computer Assisted Intervention (MICCAI), Singapore, 18–22 September 2022; pp. 645–655. [Google Scholar]
- Isola, P.; Zhu, J.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Makita, S.; Miura, M.; Azuma, S.; Mino, T.; Yasuno, Y. Synthesizing the Degree of Polarization Uniformity from Non-Polarization-Sensitive Optical Coherence Tomography Signals Using a Neural Network. Biomed. Opt. Express 2023, 14, 1522–1543. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, J.; Shi, J.; Boppart, S.A. Synthetic Polarization-Sensitive Optical Coherence Tomography by Deep Learning. Npj Digit. Med. 2021, 4, 105. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Li, N.; Zhao, Z.; Fan, X.; Chang, E.I.-C.; Xu, Y. MRI Cross-Modality Image-to-Image Translation. Sci. Rep. 2020, 10, 3753. [Google Scholar] [CrossRef] [PubMed]
- Kearney, V.; Ziemer, B.P.; Perry, A.; Wang, T.; Chan, J.W.; Ma, L.; Morin, O.; Yom, S.S.; Solberg, T.D. Attention-Aware Discrimination for MR-to-CT Image Translation Using Cycle-Consistent Generative Adversarial Networks. Radiol.-Artif. Intell. 2020, 2, e190027. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Tyring, A.J.; Wu, Y.; Xiao, S.; Rokem, A.S.; DeRuyter, N.P.; Zhang, Q.; Tufail, A.; Wang, R.K.; Lee, A.Y. Generating Retinal Flow Maps from Structural Optical Coherence Tomography with Artificial Intelligence. Sci. Rep. 2019, 9, 5694. [Google Scholar] [CrossRef]
- Zhang, Z.; Ji, Z.; Chen, Q.; Yuan, S.; Fan, W. Texture-Guided U-Net for OCT-to-OCTA Generation. In Proceedings of the Pattern Recognition and Computer Vision (PRCV): 4th Chinese Conference, Beijing, China, 29 October–1 November 2021; pp. 42–52. [Google Scholar]
- Li, P.L.; O’Neil, C.; Saberi, S.; Sinder, K.; Wang, K.; Tan, B.; Hosseinaee, Z.; Bizhevat, K.; Lakshminarayanan, V. Deep Learning Algorithm for Generating Optical Coherence Tomography Angiography (OCTA) Maps of the Retinal Vasculature. In Applications of Machine Learning; SPIE: Bellingham, DC, USA, 2020; pp. 39–49. [Google Scholar]
- Liu, X.; Huang, Z.; Wang, Z.; Wen, C.; Jiang, Z.; Yu, Z.; Liu, J.; Liu, G.; Huang, X.; Maier, A.; et al. A Deep Learning Based Pipeline for Optical Coherence Tomography Angiography. J. Biophotonics 2019, 12, e201900008. [Google Scholar] [CrossRef]
- Jiang, Z.; Huang, Z.; Qiu, B.; Meng, X.; You, Y.; Xi, L.; Liu, G.; Zhou, C.; Yang, K.; Maier, A.; et al. Comparative Study of Deep Learning Models for Optical Coherence Tomography Angiography. Biomed. Opt. Express 2020, 11, 1580–1597. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Huang, Z.; You, Y.; Geng, M.; Meng, X.; Qiu, B.; Zhu, L.; Gao, M.; Wang, J.; Zhou, C. Rethinking the Neighborhood Information for Deep Learning-Based Optical Coherence Tomography Angiography. Med. Phys. 2022, 49, 3705–3716. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Huang, Z.; Qiu, B.; Meng, X.; You, Y.; Liu, X.; Geng, M.; Liu, G.; Zhou, C.; Yang, K. Weakly Supervised Deep Learning-Based Optical Coherence Tomography Angiography. IEEE Trans. Med. Imaging 2020, 40, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, D.; Li, X.; Ou, C.; An, L.; Xu, Y.; Cheng, K.-T. Vessel-Promoted OCT to OCTA Image Translation by Heuristic Contextual Constraints. arXiv 2023, arXiv:2303.06807. [Google Scholar]
- Dong, L.; Wei, Y.; Lan, G.; Chen, J.; Xu, J.; Qin, J.; An, L.; Tan, H.; Huang, Y. High Resolution Imaging and Quantification of the Nailfold Microvasculature Using Optical Coherence Tomography Angiography (OCTA) and Capillaroscopy: A Preliminary Study in Healthy Subjects. Quant. Imaging Med. Surg. 2022, 12, 1844–1858. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, S.; Zhi, Z.; Wang, R.K. Eigendecomposition-Based Clutter Filtering Technique for Optical Microangiography. IEEE Trans. Biomed. Eng. 2011, 58, 2316–2323. [Google Scholar] [CrossRef] [PubMed]
- Mariampillai, A.; Standish, B.A.; Moriyama, E.H.; Khurana, M.; Munce, N.R.; Leung, M.K.; Jiang, J.; Cable, A.; Wilson, B.C.; Vitkin, I.A.; et al. Speckle Variance Detection of Microvasculature Using Swept-Source Optical Coherence Tomography. Opt. Lett. 2008, 33, 1530–1532. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Q.; Thorell, M.R.; An, L.; Durbin, M.K.; Laron, M.; Sharma, U.; Gregori, G.; Rosenfeld, P.J.; Wang, R.K. Swept-Source OCT Angiography of the Retinal Vasculature Using Intensity Differentiation-Based Optical Microangiography Algorithms. OSLI Retin. 2014, 45, 382–389. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the 18th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI ), Munich, Germany, 18–19 June 2015; pp. 234–241. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss Functions for Image Restoration with Neural Networks. IEEE Trans. Comput. Imaging 2016, 3, 47–57. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Loshchilov, I.; Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. arXiv 2016, arXiv:1608.03983. [Google Scholar]
- Bernse, J. Dynamic Thresholding of Grey-Level Images. In Proceedings of the ICPR’86: International Conference on Pattern Recognition, Berlin, Germany, October 1986; pp. 1251–1255. [Google Scholar]
- Spaide, R.F.; Fujimoto, J.G.; Waheed, N.K. Image Artifacts in Optical Coherence Tomography Angiography. Retina 2015, 35, 2163–2180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhou, K.; Rocliffe, H.R.R.; Pellicoro, A.; Cash, J.L.L.; Wang, W.; Wang, Z.; Li, C.; Huang, Z. Windowed Eigen-Decomposition Algorithm for Motion Artifact Reduction in Optical Coherence Tomography-Based Angiography. Appl. Sci. 2023, 13, 378. [Google Scholar] [CrossRef]
- Fan, J.; He, Y.; Wang, P.; Liu, G.; Shi, G. Interplane Bulk Motion Analysis and Removal Based on Normalized Cross-Correlation in Optical Coherence Tomography Angiography. J. Biophotonics 2020, 13, e202000046. [Google Scholar] [CrossRef] [PubMed]
- Kaji, S.; Kida, S. Overview of Image-to-Image Translation by Use of Deep Neural Networks: Denoising, Super-Resolution, Modality Conversion, and Reconstruction in Medical Imaging. Radiol. Phys. Technol. 2019, 12, 235–248. [Google Scholar] [CrossRef]
- Wei, X.; Hormel, T.T.; Guo, Y.; Hwang, T.S.; Jia, Y. High-Resolution Wide-Field OCT Angiography with a Self-Navigation Method to Correct Microsaccades and Blinks. Biomed. Opt. Express 2020, 11, 3234–3245. [Google Scholar] [CrossRef]
- Kang, J.-S.; Kang, J.; Kim, J.-J.; Jeon, K.-W.; Chung, H.-J.; Park, B.-H. Neural Architecture Search Survey: A Computer Vision Perspective. Sensors 2023, 23, 1713. [Google Scholar] [CrossRef]
- Tian, Y.; Shen, L.; Su, G.; Li, Z.; Liu, W. Alphagan: Fully Differentiable Architecture Search for Generative Adversarial Networks. IEEE Trans. Pattern Anal. 2022, 44, 6752–6766. [Google Scholar] [CrossRef]
Processing Method | B-Scan OCTA Images | En-Face OCTA Images | |
---|---|---|---|
MNI-B ↓ | CNR ↑ | MNI-C ↓ | |
ID | 0.558 ± 0.189 | 1.052 ± 0.285 | 0.405 ± 0.065 |
SV | 0.590 ± 0.191 | 0.830 ± 0.259 | 0.496 ± 0.078 |
ED | 0.503 ± 0.185 | 1.697 ± 0.311 | 0.356 ± 0.155 |
WA-SP-SV/ID/ED | 0.601 ± 0.168 | 1.425 ± 0.242 | 0.341 ± 0.063 |
WA-AP-ED | 0.579 ± 0.155 | 1.985 ± 0.352 | 0.166 ± 0.079 |
SWCB-AP-ED | 0.484 ± 0.168 | 2.334 ± 0.371 | 0.150 ± 0.068 |
DL Schemes | B-Scan OCTA Images | En-Face OCTA Images | ||||
---|---|---|---|---|---|---|
PSNR (dB) ↑ | SSIM ↑ | MAE ↓ | MNI-B ↓ | CNR ↑ | MNI-C ↓ | |
SS-SP-NF | 30.434 ± 7.896 | 0.910 ± 0.059 | 2.455 ± 2.012 | 0.622 ± 0.119 | 0.816 ± 0.261 | 0.356 ± 0.204 |
SS-MP-NF | 30.324 ± 7.479 | 0.910 ± 0.057 | 2.563 ± 2.146 | 0.590 ± 0.122 | 1.020 ± 0.289 | 0.344 ± 0.161 |
RS-SP-NF | 31.593 ± 7.599 | 0.918 ± 0.054 | 2.166 ± 1.808 | 0.585 ± 0.113 | 1.249 ± 0.303 | 0.196 ± 0.098 |
RS-MP-NF | 30.974 ± 7.347 | 0.911 ± 0.059 | 2.609 ± 2.878 | 0.587 ± 0.113 | 1.307 ± 0.248 | 0.357 ± 0.198 |
RS-SP-F | 32.118 ± 7.402 | 0.921 ± 0.054 | 1.940 ± 1.691 | 0.530 ± 0.128 | 1.294 ± 0.308 | 0.190 ± 0.119 |
RS-MP-F | 32.666 ± 7.010 | 0.926 ± 0.051 | 1.798 ± 1.575 | 0.528 ± 0.124 | 1.420 ± 0.291 | 0.156 ± 0.057 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Zhang, Q.; Lan, G.; Xu, J.; Qin, J.; An, L.; Huang, Y. Deep Learning for Motion Artifact-Suppressed OCTA Image Generation from Both Repeated and Adjacent OCT Scans. Mathematics 2024, 12, 446. https://doi.org/10.3390/math12030446
Lin Z, Zhang Q, Lan G, Xu J, Qin J, An L, Huang Y. Deep Learning for Motion Artifact-Suppressed OCTA Image Generation from Both Repeated and Adjacent OCT Scans. Mathematics. 2024; 12(3):446. https://doi.org/10.3390/math12030446
Chicago/Turabian StyleLin, Zhefan, Qinqin Zhang, Gongpu Lan, Jingjiang Xu, Jia Qin, Lin An, and Yanping Huang. 2024. "Deep Learning for Motion Artifact-Suppressed OCTA Image Generation from Both Repeated and Adjacent OCT Scans" Mathematics 12, no. 3: 446. https://doi.org/10.3390/math12030446
APA StyleLin, Z., Zhang, Q., Lan, G., Xu, J., Qin, J., An, L., & Huang, Y. (2024). Deep Learning for Motion Artifact-Suppressed OCTA Image Generation from Both Repeated and Adjacent OCT Scans. Mathematics, 12(3), 446. https://doi.org/10.3390/math12030446