Assessing Strategies to Overcome Barriers for Drone Usage in Last-Mile Logistics: A Novel Hybrid Fuzzy MCDM Model
Abstract
:1. Introduction
2. Literature Review
2.1. City Logistics and Last-Mile (CL and LM)
2.2. Application of Drones in CL (LML)
2.3. The Hybrid Delphi-Based Fuzzy FARE and Fuzzy COBRA Model
3. Description of the Problem
- Identity theft and collection of private information (Ps1);
- Unauthorized non-consensual photographing and recording (Ps2);
- Unauthorized usage of data and blackmail (Ps3);
- Complex identification of unauthorized drones (Ps4);
- Unauthorized usage of drones (Ps5);
- Violations of rights (Ps6);
- Physical attacks, obstruction, and phishing (Ps7);
- Intentional hacking, cyberattacks, and terrorism (Ps8).
- Liability for drone owners (Rl1);
- Drone routes (Rl2);
- Insurance obligations (Rl3);
- Operator certifications and training (Rl4);
- Congested airspace for manned aircraft (Rl5);
- Establishing liability (Rl6);
- Lack of aviation regulation (Rl7).
- Greater perceived risk (Pp1);
- Awareness of drone technology (Pp2);
- Non-transparency (Pp3);
- Social anxiety about automation (Pp4);
- Annoyance of the public (Pp5);
- Usage of drones in the private sector (Pp6);
- Drones and theft (Pp7).
- CO2 emission CO2 (En1);
- Impact on animals and birds (En2);
- Visual and sound pollution (En3).
- High initial costs (Ec1);
- Economy and employment (Ec2);
- Disruption of the transport industry (Ec3);
- Uneven distribution of income (Ec4).
- Short flight range (Te1);
- Navigation (Te2);
- Adverse weather conditions (Te3);
- Obstacle and collision avoidance (Te4);
- Drone tracking (Te5);
- Limited transport capacity (Te6).
- Public presentations, workshops, panel discussions;
- Social media campaigns;
- Establishment of clear and accessible policies;
- Addressing public concerns;
- Identification and resolution of technical barriers;
- Partnerships and collaboration;
- Monitoring and evaluation.
- Development of clear regulations and laws governing drone usage;
- Transparency and trust;
- Cost reduction;
- Environmental protection;
- Prevention of misuse;
- Collaboration with relevant institutions;
- Training and certification;
- International cooperation.
- Research and development of drone technologies;
- Enhancement of software systems;
- Flight testing centers;
- Technology transfer;
- Security and safety performance;
- Evaluation and improvement.
- Partnerships and collaboration with regulatory bodies and government agencies;
- Partnerships with local entities;
- Collaboration with technology suppliers;
- Partnerships with customers.
- Technical development;
- Collaboration among participants;
- Regulatory measures;
- Unauthorized drone identification technology;
- Response procedures.
- Charging and landing stations,
- Communication networks,
- Data management systems.
- Efficient route planning;
- Enhanced drone autonomy;
- Drone fleet management;
- Operational scalability;
- Delivery consolidation;
- Integration with other transportation modes;
- Inventory tracking and management.
4. Methodology
5. Evaluation and Ranking of Barriers for the Implementation of Drones and Strategies for Overcoming Them
5.1. Results
5.2. Sensitivity Analysis
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tadić, S.; Zečević, S. Modeliranje Koncepcija City Logistike, 1st ed.; Faculty of Transport and Traffic Engineering, University of Belgrade: Belgrade, Serbia, 2016; pp. 31–34. [Google Scholar]
- Tadić, S.; Krstić, M.; Kovač, M.; Brnjac, N. Smart solutions for the problems of city logistics. In Proceedings of the 19th European Transport Congress: European Green Deal Challenges and Solutions for Mobility and Logistics in Cities, Maribor, Slovenia, 7 October 2021. [Google Scholar]
- Tadić, S.; Zečević, S.; Petrović-Vujačić, J. Globalni trendovi i razvoj logistike. Ekon. Vidici 2013, 18, 519–532. (In Serbian) [Google Scholar]
- Olsson, J.; Hellström, D.; Pålsson, H. Framework of Last Mile Logistics Research: A Systematic Review of the Literature. Sustainability 2019, 11, 7131. [Google Scholar] [CrossRef]
- Gevaers, R.; Van de Voorde, E.; Vanelslander, T. Characteristics of innovations in last mile logistics-using best practices, case studies and making the link with green and sustainable logistics. Assoc. Eur. Transp. Contrib. 2009, 1, 21. [Google Scholar]
- Borghetti, F.; Caballini, C.; Carboni, A.; Grossato, G.; Maja, R.; Barabino, B. The Use of Drones for Last-Mile Delivery: A Numerical Case Study in Milan, Italy. Sustainability 2022, 14, 1766. [Google Scholar] [CrossRef]
- Cárdenas, I.; Beckers, J.; Vanelslander, T. E-commerce last-mile in Belgium: Developing an external cost delivery index. Res. Transp. Bus. Manag. 2017, 24, 123–129. [Google Scholar] [CrossRef]
- Buldeo Rai, H.; Verlinde, S.; Macharis, C. The “next day, free delivery” myth unravelled: Possibilities for sustainable last mile transport in an omnichannel environment. Int. J. Retail Distrib. Manag. 2019, 47, 39–54. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, J.; Yang, S.; Wei, J. Consumer’s intention to use self-service parcel delivery service in online retailing: An empirical study. Internet Res. 2018, 28, 500–519. [Google Scholar] [CrossRef]
- Ranieri, L.; Digiesi, S.; Silvestri, B.; Roccotelli, M. A review of last mile logistics innovations in an externalities cost reduction vision. Sustainability 2018, 10, 782. [Google Scholar] [CrossRef]
- Lim, S.F.W.T.; Jin, X.; Srai, J.S. Consumer-driven e-commerce: A literature review, design framework, and research agenda on last-mile logistics models. Int. J. Phys. Distrib. Logist. Manag. 2018, 48, 308–332. [Google Scholar] [CrossRef]
- Tadić, S.; Zečević, S. Global trends and their impact on city logistics management. Tehnika 2016, 71, 459–464. [Google Scholar] [CrossRef]
- Harrington, T.S.; Singh Srai, J.; Kumar, M.; Wohlrab, J. Identifying design criteria for urban system ‘last-mile’ solutions—A multi-stakeholder perspective. Prod. Plan. Control 2016, 27, 456–476. [Google Scholar] [CrossRef]
- Gevaers, R.; Van de Voorde, E.; Vanelslander, T. Cost Modelling and Simulation of Last-mile Characteristics in an Innovative B2C Supply Chain Environment with Implications on Urban Areas and Cities. Procedia Soc. Behav. Sci. 2014, 125, 398–411. [Google Scholar] [CrossRef]
- Boyer, K.K.; Prud’homme, A.M.; Chung, W. The Last Mile Challenge: Evaluating the Effects of Customer Density and Delivery Window Patterns. J. Bus. Logist. 2009, 30, 185–201. [Google Scholar] [CrossRef]
- Muñuzuri, J.; Cortés, P.; Grosso, R.; Guadix, J. Selecting the location of minihubs for freight delivery in congested downtown areas. J. Comput. Sci. 2012, 3, 228–237. [Google Scholar] [CrossRef]
- Leung, K.H.; Choy, K.L.; Siu, P.K.Y.; Ho, G.T.S.; Lam, H.Y.; Lee, C.K.M. A B2C e-commerce intelligent system for re-engineering the e-order fulfilment process. Expert Syst. Appl. 2018, 91, 386–401. [Google Scholar] [CrossRef]
- Xing, Y.; Grant, D.B.; McKinnon, A.C.; Fernie, J. The interface between retailers and logistics service providersin the online market. Eur. J. Mark. 2011, 45, 334–357. [Google Scholar] [CrossRef]
- van Loon, P.; Deketele, L.; Dewaele, J.; McKinnon, A.; Rutherford, C. A comparative analysis of carbon emissions from online retailing of fast moving consumer goods. J. Clean. Prod. 2015, 106, 478–486. [Google Scholar] [CrossRef]
- Edwards, J.B.; McKinnon, A.C.; Cullinane, S.L. Comparative analysis of the carbon footprints of conventional and online retailing: A “last mile” perspective. Int. J. Phys. Distrib. Logist. Manag. 2010, 40, 103–123. [Google Scholar] [CrossRef]
- Aljohani, K.; Thompson, R.G. A Stakeholder-Based Evaluation of the Most Suitable and Sustainable Delivery Fleet for Freight Consolidation Policies in the Inner-City Area. Sustainability 2018, 11, 124. [Google Scholar] [CrossRef]
- Allen, J.; Bekta¸s, T.; Cherrett, T.; Friday, A.; McLeod, F.; Piecyk, M.; Piotrowska, M.; Austwick, M.Z. Enabling a Freight Traffic Controller for Collaborative Multidrop Urban Logistics: Practical and Theoretical Challenges. Trans. Res. Rec. 2017, 2609, 77–84. [Google Scholar] [CrossRef]
- Verma, A. Electric vehicle routing problem with time windows, recharging stations and battery swapping stations. EURO J. Transp. Logist. 2018, 7, 415–451. [Google Scholar] [CrossRef]
- Breunig, U.; Baldacci, R.; Hartl, R.F.; Vidal, T. The electric two-echelon vehicle routing problem. Comput. Oper. Res. 2019, 103, 198–210. [Google Scholar] [CrossRef]
- Schneider, M.; Stenger, A.; Goeke, D. The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations. Transp. Sci. 2014, 48, 500–520. [Google Scholar] [CrossRef]
- Dorling, K.; Heinrichs, J.; Messier, G.G.; Magierowski, S. Vehicle Routing Problems for Drone Delivery. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 70–85. [Google Scholar] [CrossRef]
- Murray, C.C.; Chu, A.G. The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery. Transp. Res. Part C Emerg. Technol. 2015, 54, 86–109. [Google Scholar] [CrossRef]
- Reyes, D.; Savelsbergh, M.; Toriello, A. Vehicle routing with roaming delivery locations. Transp. Res. Part C Emerg. Technol. 2017, 80, 71–91. [Google Scholar] [CrossRef]
- Lebeau, P.; Macharis, C.; van Mierlo, J.; Maes, G. Implementing electric vehicles in urban distribution: A discrete event simulation. World Electr. Veh. J. 2013, 6, 38–47. [Google Scholar] [CrossRef]
- Morganti, E.; Browne, M. Technical and operational obstacles to the adoption of electric vans in France and the UK: An operator perspective. Transp. Policy 2018, 63, 90–97. [Google Scholar] [CrossRef]
- Conway, A.; Cheng, J.; Kamga, C.; Wan, D. Cargo cycles for local delivery in New York City: Performance and impacts. Res. Transp. Bus. Manag. 2017, 24, 90–100. [Google Scholar] [CrossRef]
- Saenz, J.; Figliozzi, M.; Faulin, J. Assessment of the Carbon Footprint Reductions of Tricycle Logistics Services. Transp. Res. Rec. 2016, 2570, 48–56. [Google Scholar] [CrossRef]
- Kornatowski, P.M.; Bhaskaran, A.; Heitz, G.M.; Mintchev, S.; Floreano, D. Last-Centimeter Personal Drone Delivery: Field Deployment and User Interaction. IEEE Robot. Autom. Lett. 2018, 3, 3813–3820. [Google Scholar] [CrossRef]
- Vakulenko, Y.; Hellström, D.; Hjort, K. What’s in the parcel locker? Exploring customer value in e-commerce last mile delivery. J. Bus. Res. 2018, 88, 421–427. [Google Scholar] [CrossRef]
- Lebeau, P.; De Cauwer, C.; Van Mierlo, J.; Macharis, C.; Verbeke, W.; Coosemans, T. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre? Sci. World J. 2015, 2015, 302867. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, Q.; Susilo, Y.O. Assessing the impacts of collection-delivery points to individual’s activity-travel patterns: A greener last mile alternative? Transp. Res. Part E Logist. Transp. Rev. 2019, 121, 84–99. [Google Scholar] [CrossRef]
- Song, L.; Guan, W.; Cherrett, T.; Li, B. Quantifying the Greenhouse Gas Emissions of Local Collection-and-Delivery Points for Last-Mile Deliveries. Transp. Res. Rec. 2013, 2340, 66–73. [Google Scholar] [CrossRef]
- Xu, M.; Ferrand, B.; Roberts, M. The last mile of e-commerce—Unattended delivery from the consumers and eTailers’ perspectives. Int. J. Electron. Mark. Retail. 2008, 2, 20–38. [Google Scholar] [CrossRef]
- Wang, X.; Zhan, L.; Ruan, J.; Zhang, J. How to choose “last mile” delivery modes for E-fulfillment. Math. Probl. Eng. 2014, 2014, 417129. [Google Scholar] [CrossRef]
- Punakivi, M.; Yrjölä, H.; Holmström, J. Solving the last mile issue: Reception box or delivery box? Int. J. Phys. Distrib. Logist. Manag. 2001, 31, 427–439. [Google Scholar] [CrossRef]
- Cardenas, I.D.; Dewulf, W.; Vanelslander, T.; Smet, C.; Beckers, J. The e-commerce parcel delivery market and the implications of home B2C deliveries vs. pick-up points. Int. J. Transp. Econ. 2017, 44, 235–256. [Google Scholar]
- Lachapelle, U.; Burke, M.; Brotherton, A.; Leung, A. Parcel locker systems in a car dominant city: Location, characterisation and potential impacts on city planning and consumer travel access. J. Transp. Geogr. 2018, 71, 1–14. [Google Scholar] [CrossRef]
- Yuen, K.F.; Wang, X.; Ng, L.T.W.; Wong, Y.D. An investigation of customers’ intention to use self-collection services for last-mile delivery. Transp. Policy 2018, 66, 1–8. [Google Scholar] [CrossRef]
- de Oliveira, L.K.; Morganti, E.; Dablanc, L.; de Oliveira, R.L.M. Analysis of the potential demand of automated delivery stations for e-commerce deliveries in Belo Horizonte, Brazil. Res. Transp. Econ. 2017, 65, 34–43. [Google Scholar] [CrossRef]
- Hayel, Y.; Quadri, D.; Jiménez, T.; Brotcorne, L. Decentralized optimization of last-mile delivery services with non-cooperative bounded rational customers. Ann. Oper. Res. 2016, 239, 451–469. [Google Scholar] [CrossRef]
- Paddeu, D.; Parkhurst, G.; Fancello, G.; Fadda, P.; Ricci, M. Multi-stakeholder collaboration in urban freightconsolidation schemes: Drivers and barriers to implementation. Transport 2018, 33, 913–929. [Google Scholar] [CrossRef]
- Lindawati; Van Schagen, J.; Goh, M.; de Souza, R. Collaboration in urban logistics: Motivations and barriers. Int. J. Urban Sci. 2014, 18, 278–290. [Google Scholar] [CrossRef]
- Park, H.; Park, D.; Jeong, I.-J. An e ects analysis of logistics collaboration in last-mile networks for CEP delivery services. Transp. Policy 2016, 50, 115–125. [Google Scholar] [CrossRef]
- Cleophas, C.; Cottrill, C.; Ehmke, J.F.; Tierney, K. Collaborative urban transportation: Recent advances in theory and practice. Eur. J. Oper. Res. 2019, 273, 801–816. [Google Scholar] [CrossRef]
- Gonzalez-Feliu, J.; Pronello, C.; Salanova Grau, J.M. Multi-stakeholder collaboration in urban transport: State-of-the-art and research opportunities. Transport 2018, 33, 1079–1094. [Google Scholar] [CrossRef]
- Halldórsson, Á.; Kotzab, H.; Skjøtt-Larsen, T. Supply chain management on the crossroad to sustainability: A blessing or a curse? Logist. Res. 2009, 1, 83–94. [Google Scholar] [CrossRef]
- McKinsey. Parcel Delivery: The Future of Last Mile. 2016. Available online: https://bdkep.de/files/bdkep-dateien/pdf/2016_the_future_of_last_mile.pdf (accessed on 7 October 2023).
- Otto, A.; Agatz, N.; Campbell, J.; Golden, B.; Pesch, E. Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A survey. Networks 2018, 72, 411–458. [Google Scholar] [CrossRef]
- Osakwe, C.N.; Hudik, M.; Ríha, D.; Stros, M.; Ramayah, T. Critical factors characterizing consumers’ intentions to use drones for last-mile delivery: Does delivery risk matter. J. Retail. Consum. Serv. 2021, 65, 102865. [Google Scholar] [CrossRef]
- Bamburry, D. Drones: Designed for Product Delivery. Des. Manag. Rev. 2015, 26, 40–48. [Google Scholar] [CrossRef]
- Chen, C.; Demir, F.; Huang, Y.; Qiu, R. The adoption of self-driving delivery robots in last mile logistic. Transp. Res. Part E Logist. Transp. Rev. 2021, 146, 102214. [Google Scholar] [CrossRef]
- Khan, R.; Tausif, S.; Javed Malik, A. Consumer Acceptance of Delivery Drones in Urban Areas. Int. J. Consum. Stud. 2019, 43, 87–101. [Google Scholar] [CrossRef]
- Rathlev, F.; Meyer, B.; Juerss, S. Innovative Technologies for Aerial Survey of gas Pipes. Gas Energy 2012, 5, 1–5. [Google Scholar]
- Kim, S.J.; Lim, G.J.; Cho, J.; Ĉot’e, M.J. Drone-aided Healthcare Services for Patients with Chronic Diseases in Rural Areas. J. Intell. Robot. Syst. 2017, 88, 163–180. [Google Scholar] [CrossRef]
- Malveaux, C.; Hall, S.G.; Price, R.R. Using Drones in Agriculture: Unmanned Aerial Systems for Agricultural Remote Sensing Applications; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2016. [Google Scholar]
- Ham, Y.; Han, K.K.; Lin, J.J.; Golparvar-Fard, M. Visual monitoring of civil infrastructure systems via camera-equipped Unmanned Aerial Vehicles (UAVs): A review of related works. Vis. Eng. 2016, 4, 1. [Google Scholar] [CrossRef]
- Vattapparamban, E.; Güvenç, İ.; Yurekli, A.İ.; Akkaya, K.; Uluağaç, S. Drones for SMART CITIES: Issues in Cybersecurity, Privacy, and Public Safety. In Proceedings of the International Wireless Communications and Mobile Computing Conference (IWCMC), Paphos, Cyprus, 5–9 September 2016; pp. 216–221. [Google Scholar]
- Lee, S.; Choi, Y. Reviews of Unmanned Aerial Vehicle (Drone) Technology Trends and its Applications in the Mining Industry. Geosystem Eng. 2016, 19, 197–204. [Google Scholar] [CrossRef]
- Li, C.J.; Ling, H. Synthetic aperture radar imaging using a small consumer drone. In Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015; pp. 685–686. [Google Scholar]
- Marris, E. Drones in Science: Fly and Bring me Data. Nat. News 2013, 498, 156. [Google Scholar] [CrossRef]
- Emery, J.R. The Possibilities and Pitfalls of Humanitarian Drones. Ethics Int. Aff. 2016, 30, 153–165. [Google Scholar] [CrossRef]
- Springer, J. Military Robots and Drones: A Reference Handbook; ABC-CLIO: Santa Barbara, CA, USA, 2013. [Google Scholar]
- Casella, E.; Collin, A.; Harris, D.; Ferse, S.; Bejarano, S.; Parravicini, V.; Hench, J.L.; Rovere, A. Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs 2016, 1, 269–275. [Google Scholar] [CrossRef]
- Carlsson, J.G.; Song, S. Coordinated Logistics with a Truck and a Drone. Manag. Sci. 2018, 64, 4052–4069. [Google Scholar] [CrossRef]
- Mourelo Ferrandez, S.; Harbison, T.; Webwer, T.; Sturges, R.; Rich, R. Optimization of a Truck-Drone in Tandem Delivery Network Using K-Means and Genetic Algorithm. J. Ind. Eng. Manag. 2016, 9, 374–388. [Google Scholar] [CrossRef]
- Barrientos, A.; Colorado, J.; Cerro, J.D.; Martinez, A.; Rossi, C.; Sanz, D.; Valente, J. Aerial Remote Sensing in Agriculture: A Practical Approach to Area Coverage and Path Planning for Fleets of Mini Aerial Robots. J. Field Robot. 2011, 28, 667–689. [Google Scholar] [CrossRef]
- Scott, J.; Scott, C. Drone Delivery Models for Healthcare. In Proceedings of the 50th Hawaii International Conference on System Sciences, Hilton Waikoloa Village, HI, USA, 4–7 January 2017. [Google Scholar]
- Tadić, S.; Krstić, M.; Zečević, S. Defining the typical structures of the intermodal terminals. In Quantitative Methods in Logistics; Vidović, M., Kilibarda, M., Zečević, S., Radivojević, G., Eds.; Faculty of Transport and Traffic Engineering, University of Belgrade: Beograd, Serbia, 2020; pp. 67–86. [Google Scholar]
- Luppicini, R.; So, A.A. Techno-Ethical Review of Commercial Drone use in the Context of Governance, Ethics, and Privacy. Technol. Soc. 2016, 46, 109–119. [Google Scholar] [CrossRef]
- Sandbrook, C. The Social Implications of Using Drones for Biodiversity Conservation. Ambio 2015, 44, 636–647. [Google Scholar] [CrossRef] [PubMed]
- Goodchild, A.; Toy, J. Delivery by drone: An evaluation of unmanned aerial vehicle technology in reducing CO2 emissions in the delivery service industry. Transp. Res. Part D Transp. Environ. 2017, 61, 58–67. [Google Scholar] [CrossRef]
- Delbecq, A.L.; Ven, A.; Gustafson, D. Group Techniques for Program Planning: A Guide to Nominal Group and Delphi Processes; Scott Forman and Co.: Glenview, IL, USA, 1986. [Google Scholar]
- Safari, H.; Soufi, M.; Aghasi, E. Select a Hypermarket Location Based on Fuzzy Multi Criteria Decision Making (F-MCDM) Techniques (Hybrid of F-Delphi, F-AHP, F-LLSM and F-PROMTHEE). Kuwait Chapter Arab. J. Bus. Manag. Rev. 2014, 4, 76–95. [Google Scholar] [CrossRef]
- Zecević, S.; Tadić, S.; Krstić, M. Intermodal transport terminal location selection using a novel hybrid MCDM model. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2017, 25, 853–876. [Google Scholar] [CrossRef]
- Pojadas, D.J.; Abundo, M.L.S. A web-based Delphi multi-criteria group decision-making framework for renewable energy project development processes. Int. J. Manag. Decis. Mak. 2020, 19, 426–449. [Google Scholar] [CrossRef]
- Tadić, S.; Krstić, M.; Roso, V.; Brnjac, N. Dry port terminal location selection by applying the hybrid grey MCDM model. Sustainability 2020, 12, 6983. [Google Scholar] [CrossRef]
- Zha, S.; Guo, Y.; Huang, S.; Wang, S. A hybrid MCDM method using combination weight for the selection of facility layout in the manufacturing system: A case study. Math. Probl. Eng. 2020, 2020, 1320173. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, S.; Zhao, H. Comprehensive assessment for battery energy storage systems based on fuzzy-MCDM considering risk preferences. Energy 2019, 168, 450–461. [Google Scholar] [CrossRef]
- Ginevičius, R. A new determining method for the criteria weights in multicriteria evaluation. Int. J. Inf. Technol. Decis. Mak. 2011, 10, 1067–1095. [Google Scholar] [CrossRef]
- Krylovas, A.; Zavadskas, E.K.; Kosareva, N.; Dadelo, S. New KEMIRA method for determining criteria priority and weights in solving MCDM problem. Int. J. Inf. Technol. Decis. Mak. 2014, 13, 1119–1133. [Google Scholar] [CrossRef]
- Chatterjee, P.; Mondal, S.; Boral, A.; Banerjee, A.; Chakraborty, S. A novel hybrid method for non-traditional machining process selection using factor relationship and multi-attributive border approximation. FU Mech. Eng. 2017, 15, 439–456. [Google Scholar] [CrossRef]
- Kazan, H.; Özçelik, S.; Hobikoğlu, E.H. Election of deputy candidates for nomination with AHP-Promethee methods. Procedia Soc. Behav. Sci. 2015, 195, 603–613. [Google Scholar] [CrossRef]
- Roy, J.; Pamučar, D.; Kar, S. Evaluation and selection of third party logistics provider under sustainability perspectives: An interval valued fuzzy-rough approach. Ann. Oper. Res. 2020, 293, 669–714. [Google Scholar] [CrossRef]
- Krstić, M.; Tadić, S.; Elia, V.; Massari, S.; Farooq, M.U. Intermodal Terminal Subsystem Technology Selection Using Integrated Fuzzy MCDM Model. Sustainability 2023, 15, 3427. [Google Scholar] [CrossRef]
- Krstić, M.; Agnusdei, G.P.; Tadić, S.; Miglietta, P. Prioritization of e-traceability drivers in the agri-food supply chains. Agric. Food Econ. 2023, 11, 42. [Google Scholar] [CrossRef]
- Krstić, M.; Tadić, S.; Kovač, M.; Roso, V.; Zečević, S. A novel hybrid MCDM model for the evaluation of sustainable last mile solutions. Math. Probl. Eng. 2021, 2021, 5969788. [Google Scholar] [CrossRef]
- Krstić, M.; Agnusdei, G.P.; Miglietta, P.; Tadić, S.; Roso, V. Applicability of industry 4.0 technologies in the reverse logistics: A circular economy approach based on Comprehensive Distance Based Ranking (COBRA) method. Sustainability 2022, 14, 5632. [Google Scholar] [CrossRef]
- Krstić, M.; Agnusdei, G.P.; Miglietta, P.; Tadić, S. Evaluation of the smart reverse logistics development scenarios using a novel MCDM model. Clean. Environ. Syst. 2022, 7, 100099. [Google Scholar] [CrossRef]
- Krstić, M.; Agnusdei, G.P.; Miglietta, P.; Tadić, S. Logistics 4.0 toward circular economy in the agri-food sector. Sustain. Futures 2022, 4, 100097. [Google Scholar] [CrossRef]
- Popović, G.; Pucar, Đ.; Smarandache, F. MEREC-COBRA approach in e-commerce development strategy selection. J. Process Manag. New Technol. 2022, 10, 66–74. [Google Scholar] [CrossRef]
- Nila, B.; Roy, J. A new hybrid MCDM framework for third-party logistic provider selection under sustainability perspectives. Expert Syst. Appl. 2023, 234, 121009. [Google Scholar]
- Li, H.; Wang, W.; Fan, L.; Li, Q.; Chen, X. A novel hybrid MCDM model for machine tool selection using fuzzy DEMATEL, entropy weighting and later defuzzification VIKOR. Appl. Soft Comput. 2020, 91, 106207. [Google Scholar] [CrossRef]
- Chaurasiya, R.; Jain, D. Hybrid MCDM method on pythagorean fuzzy set and its application. Decis. Mak. Appl. Manag. Eng. 2023, 6, 379–398. [Google Scholar] [CrossRef]
- Alshahrani, R.; Yenugula, M.; Algethami, H.; Alharbi, F.; Goswami, S.S.; Naveed, Q.N.; Lasisi, A.; Islam, S.; Khan, N.A.; Zahmatkesh, S. Establishing the fuzzy integrated hybrid MCDM framework to identify the key barriers to implementing artificial intelligence-enabled sustainable cloud system in an IT industry. Expert Syst. Appl. 2023, 238, 121732. [Google Scholar] [CrossRef]
- Manna, S.; Basu, T.M.; Mondal, S.K. A new algorithmic approach to linguistically valued soft multi-criteria group decision-making problems using linguistic scale function. Appl. Soft Comput. 2019, 83, 105651. [Google Scholar] [CrossRef]
- Herrera-Viedma, E.; Palomares, I.; Li, C.C.; Cabrerizo, F.J.; Dong, Y.; Chiclana, F.; Herrera, F. Revisiting fuzzy and linguistic decision making: Scenarios and challenges for making wiser decisions in a better way. IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 191–208. [Google Scholar] [CrossRef]
- Voccia, S.A.; Campbell, A.M.; Thomas, B.W. The Same-Day Delivery Problem for Online Purchases. Transp. Sci. 2019, 13, 167–184. [Google Scholar] [CrossRef]
- Vakulenko, Y.; Shams, P.; Hellström, D.; Hjort, K. Service Innovation in E-Commerce Last Mile Delivery: Mapping the E-Customer Journey. J. Bus. Res. 2019, 101, 461–468. [Google Scholar] [CrossRef]
- Yoo, W.; Yu, E.; Jung, J. Drone Delivery: Factors Affecting the Public’s Attitude and Intention to Adopt. Telemat. Inform. 2018, 35, 1687–1700. [Google Scholar] [CrossRef]
- Sah, B.; Gupta, R.; Bani-Hani, D. Analysis of barriers to implement drone logistics. Int. J. Logist. Res. Appl. 2020, 24, 531–550. [Google Scholar] [CrossRef]
- Chang, V.; Chundury, P.; Chetty, M. Spiders in the Sky: User Perceptions of Drones, Privacy, and Security. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, ACM 2017, Denver, CO, USA, 6–11 May 2017; pp. 6765–6776. [Google Scholar]
- Bracken, C.; Lyon, R.D.; Mansour, M.J.; Molnar, A.; Saulnier, A.; Thompson, S.; Adams, G.; Masoodi, M.; Sharpe, J. Su Veillance Drones: Privacy Implications of the Spread of Unmanned Aerial Vehicles (UAVs) in Canada; Surveillance Studies Centre, Queen’s University: Kingston, UK, 2014; p. 30. [Google Scholar]
- Sanjab, A.; Saad, W.; Basar, T. Prospect Theory for Enhanced Cyber-Physical Security of Drone Delivery Systems: A Network Interdiction Game. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar]
- Kwon, H.; Kim, J.; Park, Y. Applying LSA Text Mining Technique in Envisioning Social Impacts of Emerging Technologies: The Case of Drone Technology. Technovation 2017, 60, 15–28. [Google Scholar] [CrossRef]
- Buko, J.; Bulsa, M.; Makowski, A. Spatial premises and key conditions for the use of UAVs for delivery of items on the example of the polish courier and postal services market. Energies 2022, 15, 1403. [Google Scholar] [CrossRef]
- Merkert, R.; Bushell, J. Managing the drone revolution: A systematic literature review into the current use of airborne drones and future strategic directions for their effective control. J. Air Transp. Manag. 2020, 89, 101929. [Google Scholar] [CrossRef]
- Kellermann, R.; Biehle, T.; Fischer, L. Drones for parcel and passenger transportation: A literature review. Transp. Res. Interdiscip. Perspect. 2020, 4, 100088. [Google Scholar] [CrossRef]
- Cohen, A.P.; Shaheen, S.A.; Farrar, E.M. Urban air mobility: History, ecosystem, market potential, and challenges. IEEE Trans. Intell. Transp. Syst. 2021, 22, 6074–6087. [Google Scholar] [CrossRef]
- Ravich, T.M. Commercial Drones and the Phantom Menace. J. Int. Media Entertain. Law 2013, 5, 1–35. [Google Scholar] [CrossRef]
- Park, H.J.; Mirjalili, R.; Côté, M.J.; Lim, G.J. Scheduling diagnostic testing kit deliveries with the mothership and drone routing problem. J. Intell. Robot. Syst. 2022, 105, 38. [Google Scholar] [CrossRef] [PubMed]
- Kuru, K. Planning the future of smart cities with swarms of fully autonomous drones using a new framework. IEEE Access 2021, 9, 6571–6595. [Google Scholar] [CrossRef]
- Kapoor, R.; Cloet, N.; Gardi, A.; Mohamed, A.; Sabatini, R. Sound propagation modeling for manned and unmanned aircraft noise assessment and mitigation: A review. Atmosfera 2021, 12, 1424. [Google Scholar]
- Toria, A.J.; Clark, C. A psychoacoustic approach to building knowledge about the human response to drone noise. Int. J. Environ. Res. Public Health 2021, 18, 682. [Google Scholar] [CrossRef] [PubMed]
- Stolaroff, J.K.; Samaras, C.; O’Neill, E.R.; Lubers, A.; Mitchell, A.S.; Ceperley, D. Life-cycle energy use and greenhouse gas emissions of commercial package delivery drones. Nat. Commun. 2018, 9, 409. [Google Scholar] [CrossRef]
- Toria, A.J.; Li, Z. Self, RH Effects of flying drone on urban soundscape perception. Transp. Res. Part D Transp. Environ. 2020, 78, 102195. [Google Scholar]
- Ahmed, S.S.; Hulme, K.F.; Fountas, G.; Eker, U.; Benedyk, I.V.; Still, S.E.; Anastasopoulos, C. The flying car—Challenges and strategies for future adoption. Front. Built Environ. 2020, 6, 1. [Google Scholar] [CrossRef]
- Çetin, E.; Cano, A.; Deransy, R.; Tres, S.; Barrado, C. Implementing mitigation to improve social acceptance of urban air mobility. Drones 2022, 6, 28. [Google Scholar] [CrossRef]
- Agatz, N.; Bouman, P.; Schmidt, M. Optimization Approaches for the Traveling Salesman Problem with Drone. Transp. Sci. 2018, 52, 965–981. [Google Scholar] [CrossRef]
- Ross, E. Open-source Drones for fun and Profit. IEEE Spectr. 2014, 51, 54–59. [Google Scholar] [CrossRef]
- Hallermann, N.; Morgenthal, G. Unmanned Aerial Vehicles (UAV) for the Assessment of Existing Structures. IABSE Symp. Rep. 2013, 101, 1–8. [Google Scholar]
- Tadić, S.; Kovač, M.; Krstić, M.; Roso, V.; Brnjac, N. The selection of intermodal transport system scenarios in the function of southeastern europe regional development. Sustainability 2021, 13, 5590. [Google Scholar] [CrossRef]
- Paik, B.; Mondal, S.K. A distance-similarity method to solve fuzzy sets and fuzzy soft sets-based decision-making problems. Soft Comput. 2020, 24, 5217–5229. [Google Scholar] [CrossRef]
Linguistic Evaluation | Abbreviation | Fuzzy Scale |
---|---|---|
“None” | “N” | (1, 1, 2) |
“Very Low” | “VL” | (1, 2, 3) |
“Low” | “L” | (2, 3, 4) |
“Fairly Low” | “FL” | (3, 4, 5) |
“Medium” | “M” | (4, 5, 6) |
“Fairly High” | “FH” | (5, 6, 7) |
“High” | “H” | (6, 7, 8) |
“Very High” | “VH” | (7, 8, 9) |
“Extremely High” | “EH” | (8, 9, 10) |
Stakeholder | Experience (Years) | Number of Representatives |
---|---|---|
Logistics service providers | <5 | 5 |
5–15 | 6 | |
>15 | 3 | |
Logistics service users | <5 | 2 |
5–15 | 4 | |
>15 | 4 | |
City authorities and regulatory bodies | <5 | 3 |
5–15 | 4 | |
>15 | 2 | |
Residents (public) | / | 10 |
Barrier | Weight (Significance) | Rank |
---|---|---|
Rl1 | 0.32 | 5 |
Rl2 | 0.14 | 16 |
Rl3 | 0.33 | 4 |
Rl4 | 0.11 | 18 |
Rl5 | 0.11 | 19 |
Rl6 | 0.08 | 27 |
Rl7 | 0.44 | 1 |
Te1 | 0.15 | 15 |
Te2 | 0.21 | 10 |
Te3 | 0.07 | 31 |
Te4 | 0.29 | 6 |
Te5 | 0.22 | 9 |
Te6 | 0.15 | 14 |
Pp1 | 0.24 | 8 |
Pp2 | 0.08 | 28 |
Pp3 | 0.11 | 20 |
Pp4 | 0.11 | 22 |
Pp5 | 0.07 | 30 |
Pp6 | 0.03 | 35 |
Pp7 | 0.16 | 13 |
Ps1 | 0.36 | 2 |
Ps2 | 0.28 | 7 |
Ps3 | 0.36 | 3 |
Ps4 | 0.04 | 34 |
Ps5 | 0.10 | 23 |
Ps6 | 0.18 | 12 |
Ps7 | 0.14 | 17 |
Ps8 | 0.19 | 11 |
Ec1 | 0.09 | 24 |
Ec2 | 0.09 | 26 |
Ec3 | 0.11 | 21 |
Ec4 | 0.08 | 29 |
En1 | 0.09 | 25 |
En2 | 0.06 | 32 |
En3 | 0.05 | 33 |
Comprehensive Distances | Values | Norm | Rank |
---|---|---|---|
dC (S1) | 1.474 | 0.50 | 5 |
dC (S2) | −10.862 | 0.00 | 1 |
dC (S3) | −4.819 | 0.25 | 2 |
dC (S4) | −4.575 | 0.26 | 3 |
dC (S5) | −4.319 | 0.27 | 4 |
dC (S6) | 1.659 | 0.51 | 6 |
dC (S7) | 13.667 | 1.00 | 7 |
Strategy/Scenario | Sc0 | Sc1 | Sc2 | Sc3 | Sc4 | Sc5 | Sc6 |
---|---|---|---|---|---|---|---|
S1 | 5 | 5 | 6 | 6 | 6 | 6 | 6 |
S2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
S3 | 2 | 2 | 3 | 3 | 2 | 2 | 3 |
S4 | 3 | 4 | 2 | 2 | 4 | 3 | 2 |
S5 | 4 | 3 | 4 | 4 | 3 | 4 | 4 |
S6 | 6 | 6 | 5 | 5 | 5 | 5 | 5 |
S7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadić, S.; Krstić, M.; Radovanović, L. Assessing Strategies to Overcome Barriers for Drone Usage in Last-Mile Logistics: A Novel Hybrid Fuzzy MCDM Model. Mathematics 2024, 12, 367. https://doi.org/10.3390/math12030367
Tadić S, Krstić M, Radovanović L. Assessing Strategies to Overcome Barriers for Drone Usage in Last-Mile Logistics: A Novel Hybrid Fuzzy MCDM Model. Mathematics. 2024; 12(3):367. https://doi.org/10.3390/math12030367
Chicago/Turabian StyleTadić, Snežana, Mladen Krstić, and Ljubica Radovanović. 2024. "Assessing Strategies to Overcome Barriers for Drone Usage in Last-Mile Logistics: A Novel Hybrid Fuzzy MCDM Model" Mathematics 12, no. 3: 367. https://doi.org/10.3390/math12030367
APA StyleTadić, S., Krstić, M., & Radovanović, L. (2024). Assessing Strategies to Overcome Barriers for Drone Usage in Last-Mile Logistics: A Novel Hybrid Fuzzy MCDM Model. Mathematics, 12(3), 367. https://doi.org/10.3390/math12030367