Faber Polynomial Coefficient Estimates of m-Fold Symmetric Bi-Univalent Functions with Bounded Boundary Rotation
Abstract
1. Introduction
2. Main Definitions
3. Main Results
4. Corollaries and Consequences
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.G. Aspects of Contemporary Complex Analysis; Academic Press, Inc.: London, UK, 1980. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |u| < 1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Studia Univ. Babeş-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef]
- Altınkaya, S.; Yalçın, S. Coefficient bounds for a subclass of bi-univalent functions. TWMS J. Pure Appl. Math. 2015, 6, 180–185. [Google Scholar]
- Hayami, T.; Owa, S. Coefficient bounds for bi-univalent functions. Pan Am. Math. J. 2012, 22, 15–26. [Google Scholar]
- Srivastava, H.M.; Bansal, D. Coefficient estimates for a subclass of analytic and bi-univalent functions. J. Egypt. Math. Soc. 2015, 23, 242–246. [Google Scholar] [CrossRef]
- Sivasubramanian, S.; Sivakumar, R. Initial coefficient bound for m-fold symmetric bi-λ-convex functions. J. Math. Inequal. 2016, 10, 783–791. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sivasubramanian, S.; Sivakumar, R. Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions. Tbilisi Math. J. 2014, 7, 1–10. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Wanas, A.K. Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination. Kyungpook Math. J. 2019, 59, 493–503. [Google Scholar]
- Jahangiri, J.M.; Murugusundaramoorthy, G.; Vijaya, K.; Uma, K. Coefficient bounds for a subclass of m-fold symmetric λ-pseudo bi-starlike functions. In Proceedings of the Advances in Algebra and Analysis: International Conference on Advances in Mathematical Sciences, Vellore, India, 1–4 December 2017; Volume I. [Google Scholar]
- Çağlar, M.; Orhan, H.; Yağmur, N. Coefficient bounds for new subclasses of bi-univalent functions. Filomat 2013, 27, 1165–1171. [Google Scholar] [CrossRef]
- Zireh, A.; Salehian, S. On the certain subclass of analytic and bi-univalent functions defined by convolution. Acta Univ. Apulensis Math. Inform. 2015, 44, 9–19. [Google Scholar]
- Paatero, V. Über Gebiete von beschrankter Randdrehung. Ann. Acad. Sci. Fenn. Ser. A 1933, 37, 1–20. [Google Scholar]
- Robertson, M.S. On the theory of univalent functions. Ann. Math. 1936, 37, 74–408. [Google Scholar] [CrossRef]
- Koepf, W.A. Coefficients of symmetric functions of bounded boundary rotation. Proc. Am. Math. Soc. 1089, 105, 324–329. [Google Scholar] [CrossRef]
- Brannan, D.A. On functions of bounded boundary rotation. I. Proc. Edinb. Math. Soc. 1969, 16, 339–347. [Google Scholar] [CrossRef]
- Leach, R.J. On odd functions of bounded boundary rotation. Can. J. Math. 1974, 26, 551–564. [Google Scholar] [CrossRef]
- Leach, R.J. Coefficients of symmetric functions of bounded boundary rotation. Can. J. Math. 1974, 26, 1351–1355. [Google Scholar] [CrossRef]
- Faber, G. Über polynomische Entwickelungen. Math. Ann. 1903, 57, 389–408. [Google Scholar] [CrossRef]
- Gong, S. The Bieberbach Conjecture; Translated from the 1989 Chinese original and revised by the author; AMS/IP Studies in Advanced Mathematics; American Mathematical Society/International Press: Providence, RI, USA, 1999; Volume 12. [Google Scholar]
- Airault, H. Remarks on Faber polynomials. Int. Math. Forum 2008, 3, 449–456. [Google Scholar]
- Airault, H.; Bouali, A. Differential calculus on the Faber polynomials. Bull. Sci. Math. 2006, 130, 179–222. [Google Scholar] [CrossRef]
- Padmanabhan, K.S.; Parvatham, R. Properties of a class of functions with bounded boundary rotation. Ann. Polon. Math. 1976, 31, 311–323. [Google Scholar] [CrossRef]
- Sharma, P.; Sivasubramanian, S.; Cho, N.E. Initial coefficient bounds for certain new subclasses of bi-univalent functions with bounded boundary rotation. AIMS Math. 2023, 8, 29535–29554. [Google Scholar] [CrossRef]
- Li, Y.; Vijaya, K.; Murugusundaramoorthy, G.; Tang, H. On new subclasses of bi-starlike functions with bounded boundary rotation. AIMS Math. 2020, 5, 3346–3356. [Google Scholar] [CrossRef]
- Alkahtani, B.S.T.; Goswami, P.; Bulboacă, T. Estimate for initial MacLaurin coefficients of certain subclasses of bi-univalent functions. Miskolc Math. Notes 2016, 17, 739–748. [Google Scholar] [CrossRef]
- Tang, H.; Sharma, P.; Sivasubramanian, S. Coefficient estimates for new subclasses of bi-univalent functions with bounded boundary rotation by using faber polynomial technique. Axioms 2024, 13, 509. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations. Bull. Iran. Math. Soc. 2015, 41, 1103–1119. [Google Scholar]
- Sakar, F.M.; Güney, H. Coefficient bounds for M-fold symmetric analytic bi-Bazilevi functions using by Faber polynomial expansion. Creat. Math. Inform. 2020, 29, 81–89. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Unpredictability of the coefficients of m-fold symmetric bi-starlike functions. Internat. J. Math. 2014, 25, 1450064. [Google Scholar] [CrossRef]
- Hasan, A.M.; Khalaf, M.; Sabbar, B.M.; Ibrahim, R.W.; Jalab, H.A.; Meziane, F. Lung CT image segmentation using VGG-16 network with image enhancement based on bounded turning mittag-leffler function. Baghdad Sci. J. 2024, 21, 3892–3902. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murugan, A.; Sivasubramanian, S.; Sharma, P.; Murugusundaramoorthy, G. Faber Polynomial Coefficient Estimates of m-Fold Symmetric Bi-Univalent Functions with Bounded Boundary Rotation. Mathematics 2024, 12, 3963. https://doi.org/10.3390/math12243963
Murugan A, Sivasubramanian S, Sharma P, Murugusundaramoorthy G. Faber Polynomial Coefficient Estimates of m-Fold Symmetric Bi-Univalent Functions with Bounded Boundary Rotation. Mathematics. 2024; 12(24):3963. https://doi.org/10.3390/math12243963
Chicago/Turabian StyleMurugan, Anandan, Srikandan Sivasubramanian, Prathviraj Sharma, and Gangadharan Murugusundaramoorthy. 2024. "Faber Polynomial Coefficient Estimates of m-Fold Symmetric Bi-Univalent Functions with Bounded Boundary Rotation" Mathematics 12, no. 24: 3963. https://doi.org/10.3390/math12243963
APA StyleMurugan, A., Sivasubramanian, S., Sharma, P., & Murugusundaramoorthy, G. (2024). Faber Polynomial Coefficient Estimates of m-Fold Symmetric Bi-Univalent Functions with Bounded Boundary Rotation. Mathematics, 12(24), 3963. https://doi.org/10.3390/math12243963