Faber Polynomial Coefficient Estimates of m-Fold Symmetric Bi-Univalent Functions with Bounded Boundary Rotation
Abstract
:1. Introduction
2. Main Definitions
3. Main Results
4. Corollaries and Consequences
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.G. Aspects of Contemporary Complex Analysis; Academic Press, Inc.: London, UK, 1980. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |u| < 1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Studia Univ. Babeş-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef]
- Altınkaya, S.; Yalçın, S. Coefficient bounds for a subclass of bi-univalent functions. TWMS J. Pure Appl. Math. 2015, 6, 180–185. [Google Scholar]
- Hayami, T.; Owa, S. Coefficient bounds for bi-univalent functions. Pan Am. Math. J. 2012, 22, 15–26. [Google Scholar]
- Srivastava, H.M.; Bansal, D. Coefficient estimates for a subclass of analytic and bi-univalent functions. J. Egypt. Math. Soc. 2015, 23, 242–246. [Google Scholar] [CrossRef]
- Sivasubramanian, S.; Sivakumar, R. Initial coefficient bound for m-fold symmetric bi-λ-convex functions. J. Math. Inequal. 2016, 10, 783–791. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sivasubramanian, S.; Sivakumar, R. Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions. Tbilisi Math. J. 2014, 7, 1–10. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Wanas, A.K. Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination. Kyungpook Math. J. 2019, 59, 493–503. [Google Scholar]
- Jahangiri, J.M.; Murugusundaramoorthy, G.; Vijaya, K.; Uma, K. Coefficient bounds for a subclass of m-fold symmetric λ-pseudo bi-starlike functions. In Proceedings of the Advances in Algebra and Analysis: International Conference on Advances in Mathematical Sciences, Vellore, India, 1–4 December 2017; Volume I. [Google Scholar]
- Çağlar, M.; Orhan, H.; Yağmur, N. Coefficient bounds for new subclasses of bi-univalent functions. Filomat 2013, 27, 1165–1171. [Google Scholar] [CrossRef]
- Zireh, A.; Salehian, S. On the certain subclass of analytic and bi-univalent functions defined by convolution. Acta Univ. Apulensis Math. Inform. 2015, 44, 9–19. [Google Scholar]
- Paatero, V. Über Gebiete von beschrankter Randdrehung. Ann. Acad. Sci. Fenn. Ser. A 1933, 37, 1–20. [Google Scholar]
- Robertson, M.S. On the theory of univalent functions. Ann. Math. 1936, 37, 74–408. [Google Scholar] [CrossRef]
- Koepf, W.A. Coefficients of symmetric functions of bounded boundary rotation. Proc. Am. Math. Soc. 1089, 105, 324–329. [Google Scholar] [CrossRef]
- Brannan, D.A. On functions of bounded boundary rotation. I. Proc. Edinb. Math. Soc. 1969, 16, 339–347. [Google Scholar] [CrossRef]
- Leach, R.J. On odd functions of bounded boundary rotation. Can. J. Math. 1974, 26, 551–564. [Google Scholar] [CrossRef]
- Leach, R.J. Coefficients of symmetric functions of bounded boundary rotation. Can. J. Math. 1974, 26, 1351–1355. [Google Scholar] [CrossRef]
- Faber, G. Über polynomische Entwickelungen. Math. Ann. 1903, 57, 389–408. [Google Scholar] [CrossRef]
- Gong, S. The Bieberbach Conjecture; Translated from the 1989 Chinese original and revised by the author; AMS/IP Studies in Advanced Mathematics; American Mathematical Society/International Press: Providence, RI, USA, 1999; Volume 12. [Google Scholar]
- Airault, H. Remarks on Faber polynomials. Int. Math. Forum 2008, 3, 449–456. [Google Scholar]
- Airault, H.; Bouali, A. Differential calculus on the Faber polynomials. Bull. Sci. Math. 2006, 130, 179–222. [Google Scholar] [CrossRef]
- Padmanabhan, K.S.; Parvatham, R. Properties of a class of functions with bounded boundary rotation. Ann. Polon. Math. 1976, 31, 311–323. [Google Scholar] [CrossRef]
- Sharma, P.; Sivasubramanian, S.; Cho, N.E. Initial coefficient bounds for certain new subclasses of bi-univalent functions with bounded boundary rotation. AIMS Math. 2023, 8, 29535–29554. [Google Scholar] [CrossRef]
- Li, Y.; Vijaya, K.; Murugusundaramoorthy, G.; Tang, H. On new subclasses of bi-starlike functions with bounded boundary rotation. AIMS Math. 2020, 5, 3346–3356. [Google Scholar] [CrossRef]
- Alkahtani, B.S.T.; Goswami, P.; Bulboacă, T. Estimate for initial MacLaurin coefficients of certain subclasses of bi-univalent functions. Miskolc Math. Notes 2016, 17, 739–748. [Google Scholar] [CrossRef]
- Tang, H.; Sharma, P.; Sivasubramanian, S. Coefficient estimates for new subclasses of bi-univalent functions with bounded boundary rotation by using faber polynomial technique. Axioms 2024, 13, 509. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations. Bull. Iran. Math. Soc. 2015, 41, 1103–1119. [Google Scholar]
- Sakar, F.M.; Güney, H. Coefficient bounds for M-fold symmetric analytic bi-Bazilevi functions using by Faber polynomial expansion. Creat. Math. Inform. 2020, 29, 81–89. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Unpredictability of the coefficients of m-fold symmetric bi-starlike functions. Internat. J. Math. 2014, 25, 1450064. [Google Scholar] [CrossRef]
- Hasan, A.M.; Khalaf, M.; Sabbar, B.M.; Ibrahim, R.W.; Jalab, H.A.; Meziane, F. Lung CT image segmentation using VGG-16 network with image enhancement based on bounded turning mittag-leffler function. Baghdad Sci. J. 2024, 21, 3892–3902. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murugan, A.; Sivasubramanian, S.; Sharma, P.; Murugusundaramoorthy, G. Faber Polynomial Coefficient Estimates of m-Fold Symmetric Bi-Univalent Functions with Bounded Boundary Rotation. Mathematics 2024, 12, 3963. https://doi.org/10.3390/math12243963
Murugan A, Sivasubramanian S, Sharma P, Murugusundaramoorthy G. Faber Polynomial Coefficient Estimates of m-Fold Symmetric Bi-Univalent Functions with Bounded Boundary Rotation. Mathematics. 2024; 12(24):3963. https://doi.org/10.3390/math12243963
Chicago/Turabian StyleMurugan, Anandan, Srikandan Sivasubramanian, Prathviraj Sharma, and Gangadharan Murugusundaramoorthy. 2024. "Faber Polynomial Coefficient Estimates of m-Fold Symmetric Bi-Univalent Functions with Bounded Boundary Rotation" Mathematics 12, no. 24: 3963. https://doi.org/10.3390/math12243963
APA StyleMurugan, A., Sivasubramanian, S., Sharma, P., & Murugusundaramoorthy, G. (2024). Faber Polynomial Coefficient Estimates of m-Fold Symmetric Bi-Univalent Functions with Bounded Boundary Rotation. Mathematics, 12(24), 3963. https://doi.org/10.3390/math12243963