The Assymptotic Invariants of a Fermat-Type Set of Points in
Abstract
:1. Introduction
2. Fermat-Type Arrangements and Configurations
3. Local Effectivity
4. Local Positivity
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pokora, P. Seshadri constants and special configurations of points in the projective plane. Rocky Mt. J. Math. 2019, 49, 963–978. [Google Scholar] [CrossRef]
- Geramita, A.V.; Harbourne, B.; Migliore, J. Star configurations in n. J. Algebra 2013, 376, 279–299. [Google Scholar] [CrossRef]
- Bauer, T.; Rocco, S.D.; Harbourne, B.; Huizenga, J.; Seceleanu, A.; Szemberg, T. Negative curves on symmetric blowups of the projective plane, resurgences, and Waldschmidt constants. Int. Math. Res. Not. 2019, 2019, 7459–7514. [Google Scholar] [CrossRef]
- Janasz, M.; Pokora, P. On Seshadri constants and point-curve configurations. Electron. Res. Arch. 2020, 28, 795–805. [Google Scholar] [CrossRef]
- Hanumanthu, K.; Roy, P.K.; Subramaniam, A. Seshadri constants of curve configurations on surfaces. Taiwan. J. Math. Adv. Publ. 2024, 28, 1053–1071. [Google Scholar] [CrossRef]
- Demailly, J.-P. Singular Hermitian metrics on positive line bundles. In Complex Algebraic Varieties, Proceedings of a Conference, Bayreuth, Germany, 2–6 April 1990; Springer: Berlin/Heidelberg, Germany, 1992; pp. 87–104. [Google Scholar]
- Waldschmidt, M. Propriétés arithmétiques de fonctions de plusieurs variables. II. In Séminaire Pierre Lelong (Analyse) Année 1975/76; et Journées sur les Fonctions Analytique, Toulouse 1976; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1977; Volume 578, pp. 108–133. [Google Scholar]
- Farnik, L.; Gwoździewicz, J.; Hejmej, B.; Lampa-Baczyńska, M.; Malara, G.; Szpond, J. Initial sequences and Waldschmidt constants of planar point configurations. Int. J. Algebra Comput. 2017, 27, 717–729. [Google Scholar] [CrossRef]
- Malara, G.; Szemberg, T.; Szpond, J. On a conjecture of Demailly and new bounds on Waldschmidt constants in N. J. Number Theory 2018, 189, 211–219. [Google Scholar] [CrossRef]
- Dumnicki, M.; Szemberg, T.; Szpond, J. Waldschmidt constants in projective spaces. J. Algebra 2024, 639, 1–22. [Google Scholar] [CrossRef]
- Chang, Y.-L.; Jow, S.-Y. Demailly’s conjecture on Waldschmidt constants for sufficiently many very general points in n. J. Number Theory 2020, 207, 138–144. [Google Scholar] [CrossRef]
- Bisui, S.; Grifo, E.; Hà, H.T.; Nguyê˜n, T.T. Demailly’s conjecture and the containment problem. J. Pure Appl. Algebra 2022, 226, 106863. [Google Scholar] [CrossRef]
- Bisui, S.; Nguyê˜n, T.T. Chudnovsky’s conjecture and the stable Harbourne-Huneke containment for general points. J. Algebra 2024, 649, 245–269. [Google Scholar] [CrossRef]
- Calvo, S. The icosahedral line configuration and Waldschmidt constants. J. Pure Appl. Algebra 2024, 228, 107563. [Google Scholar] [CrossRef]
- Bauer, T.; Malara, G.; Szemberg, T.; Szpond, J. Quartic unexpected curves and surfaces. Manuscr. Math. 2020, 161, 283–292. [Google Scholar] [CrossRef]
- Cook, D.; Harbourne, B.; Migliore, J.; Nagel, U. Line arrangements and configurations of points with an unexpected geometric property. Compos. Math. 2018, 154, 2150–2194. [Google Scholar] [CrossRef]
- Shephard, G.C.; Todd, J.A. Finite unitary reflection groups. Can. J. Math. 1954, 6, 274–304. [Google Scholar] [CrossRef]
- Hirzebruch, F. Arrangements of lines and algebraic surfaces. In Arithmetic and Geometry; Papers Dedicated to I.R. Shafarevich on the Occasion of His Sixtieth Birthday. Volume II: Geometry; Progress in Mathematics; Springer: Berlin/Heidelberg, Germany, 1983; Volume 36, pp. 113–140. [Google Scholar]
- Urzúa, G. Arrangements of curves and algebraic surfaces. J. Algebr. Geom. 2010, 19, 335–365. [Google Scholar] [CrossRef]
- Malara, G.; Szpond, J. Fermat-type configurations of lines in 3 and the containment problem. J. Pure Appl. Algebra 2018, 222, 2323–2329. [Google Scholar] [CrossRef]
- Szpond, J. Fermat-type arrangements. In Combinatorial Structures in Algebra and Geometry, Proceedings of the NSA 26, Constanţa, Romania, 26 August–1 September 2018; Springer: Cham, Switzerland, 2020; pp. 161–182. [Google Scholar]
- Lazarsfeld, R. Positivity in Algebraic Geometry I; Classical Setting: Line Bundles and Linear Series II: Positivity for Vector Bundles, and Multiplier Ideals; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Demailly, J.-P. Jensen’s formulae in several variables and arithmetic applications. Bull. Soc. Math. Fr. 1982, 110, 75–102. [Google Scholar] [CrossRef]
- Chudnovsky, G.V. Singular Points on Complex Hypersurfaces and Multidimensional Schwarz Lemma; Seminaire de Theorie des Nombres, Seminaire Delange-Pisot-Poitou, Paris 1979–80; Progress in Mathematics; Birkhäuser: Basel, Switzerland, 1981; Volume 12, pp. 29–69. [Google Scholar]
- Bocci, C.; Cooper, S.; Guardo, E.; Harbourne, B.; Janssen, M.; Nagel, U.; Seceleanu, A.; Tuyl, A.V.; Vu, T. The Waldschmidt constant for squarefree monomial ideals. J. Algebr. Comb. 2016, 44, 875–904. [Google Scholar] [CrossRef]
- Dumnicki, M.; Harbourne, B.; Szemberg, T.; Tutaj-Gasińska, H. Linear subspaces, symbolic powers and Nagata type conjectures. Adv. Math. 2014, 252, 471–491. [Google Scholar] [CrossRef]
- Bisui, S.; Grifo, E.; Hà, H.T.; Nguyen, T.T. Chudnovsky’s conjecture and the stable Harbourne-Huneke containment. Trans. Am. Math. Soc. Ser. B 2022, 9, 371–394. [Google Scholar] [CrossRef]
- Esnault, H.; Viehweg, E. Sur une minoration du degré d’hypersurfaces s’annulant en certains points. Math. Ann. 1983, 263, 75–86. [Google Scholar] [CrossRef]
- Bauer, T.; Rocco, S.D.; Harbourne, B.; Kapustka, M.; Knutsen, A.; Syzdek, W.; Szemberg, T. A primer on Seshadri constants. In Interactions of Classical and Numerical Algebraic Geometry, Proceedings of the Conference in Honor of Andrew Sommese, Notre Dame, IN, USA, 22–24 May 2008; American Mathematical Society (AMS): Providence, RI, USA, 2009; pp. 33–70. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Van, M.; Szemberg, T.
The Assymptotic Invariants of a Fermat-Type Set of Points in
Le Van M, Szemberg T.
The Assymptotic Invariants of a Fermat-Type Set of Points in
Le Van, Mikołaj, and Tomasz Szemberg.
2024. "The Assymptotic Invariants of a Fermat-Type Set of Points in
Le Van, M., & Szemberg, T.
(2024). The Assymptotic Invariants of a Fermat-Type Set of Points in