Pareto Approximation Empirical Results of Energy-Aware Optimization for Precedence-Constrained Task Scheduling Considering Switching Off Completely Idle Machines
Abstract
:1. Introduction
2. Literature Review
3. Parallel Applications Model
3.1. Parallel Applications Computing Time
3.2. Parallel Applications’ Energy Consumption
Algorithm 1 Energy switching off machines objective function. |
|
4. Algorithms in Comparison
4.1. AGEMOEA
4.2. AGEMOEA2
4.3. GWASFGA
4.4. MOCell
4.5. MOMBI
4.6. MOMBI2
4.7. NSGA2
4.8. SMS-EMOA
5. Experimental Setup
5.1. Numerical Results
5.2. Algorithms’ Settings
5.3. Evolutionary Operators
5.4. Multi-Objective Quality Indicators
5.5. Statistical Test Perform
5.6. Scheduling Studied Problems
6. Results
6.1. Numerical Results
6.2. Graphical Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silvis, J. Cloud Server’s Impact: The Environment and Supply Chain; Technical Report; University of San Diego: San Diego, CA, USA, 2024. [Google Scholar]
- Bremmer, I. The technopolar moment: How digital powers will reshape the global order. Foreign Aff. 2021, 100, 112. [Google Scholar]
- Mohsenian-Rad, A.H.; Leon-Garcia, A. Energy-information transmission tradeoff in green cloud computing. Carbon 2010, 100, 2011. [Google Scholar]
- Santiago, A.; Ponce-Flores, M.; Terán-Villanueva, J.D.; Balderas, F.; Martínez, S.I.; Rocha, J.A.C.; Menchaca, J.L.; Berrones, M.G.T. Energy Idle Aware Stochastic Lexicographic Local Searches for Precedence-Constraint Task List Scheduling on Heterogeneous Systems. Energies 2021, 14, 3473. [Google Scholar] [CrossRef]
- García Ruiz, A.H.; Santiago Pineda, A.A.; Castán Rocha, J.A.; Ibarra Martínez, S.; Terán Villanueva, J.D. Variable Neighborhood Search for precedence-constrained tasks optimization on heterogeneous systems. Expert Syst. Appl. 2024, 237, 121327. [Google Scholar] [CrossRef]
- Laghari, A.A.; Zhang, X.; Shaikh, Z.A.; Khan, A.; Estrela, V.V.; Izadi, S. A review on quality of experience (QoE) in cloud computing. J. Reliab. Intell. Environ. 2024, 10, 107–121. [Google Scholar] [CrossRef]
- Houssein, E.H.; Gad, A.G.; Wazery, Y.M.; Suganthan, P.N. Task Scheduling in Cloud Computing based on Meta-heuristics: Review, Taxonomy, Open Challenges, and Future Trends. Swarm Evol. Comput. 2021, 62, 100841. [Google Scholar] [CrossRef]
- Weinhardt, C.; Anandasivam, A.; Blau, B.; Borissov, N.; Meinl, T.; Michalk, W.; Stößer, J. Cloud computing—A classification, business models, and research directions. Bus. Inf. Syst. Eng. 2009, 1, 391–399. [Google Scholar] [CrossRef]
- Rezakhani, M.; Sarrafzadeh-Ghadimi, N.; Entezari-Maleki, R.; Sousa, L.; Movaghar, A. Energy-aware QoS-based dynamic virtual machine consolidation approach based on RL and ANN. Cluster Comput. 2024, 27, 827–843. [Google Scholar] [CrossRef]
- Arunarani, A.; Manjula, D.; Sugumaran, V. Task scheduling techniques in cloud computing: A literature survey. Future Gener. Comput. Syst. 2019, 91, 407–415. [Google Scholar] [CrossRef]
- Su, Y.; Anand, V.; Yu, J.; Tan, J.; Wierman, A. Learning-Augmented Energy-Aware List Scheduling for Precedence-Constrained Tasks. ACM Trans. Model. Perform. Eval. Comput. Syst. 2024, 9, 13. [Google Scholar] [CrossRef]
- Kocot, B.; Czarnul, P.; Proficz, J. Energy-Aware Scheduling for High-Performance Computing Systems: A Survey. Energies 2023, 16, 890. [Google Scholar] [CrossRef]
- Xie, G.; Xiao, X.; Peng, H.; Li, R.; Li, K. A Survey of Low-Energy Parallel Scheduling Algorithms. IEEE Trans. Sustain. Comput. 2022, 7, 27–46. [Google Scholar] [CrossRef]
- Cho, H.; Kim, C.; Sun, J.; Easwaran, A.; Park, J.D.; Choi, B.C. Scheduling Parallel Real-Time Tasks on the Minimum Number of Processors. IEEE Trans. Parallel Distrib. Syst. 2020, 31, 171–186. [Google Scholar] [CrossRef]
- Quang-Hung, N.; Le, D.K.; Thoai, N.; Son, N.T. Heuristics for Energy-Aware VM Allocation in HPC Clouds. In Future Data and Security Engineering: 1st International Conference, FDSE 2014, Ho Chi Minh City, Vietnam, November 19–21, 2014; Dang, T.K., Wagner, R., Neuhold, E., Takizawa, M., Küng, J., Thoai, N., Eds.; Springer: Cham, Switzerland, 2014; pp. 248–261. [Google Scholar]
- Mohammadi, A.; Akl, S.G. Number of Processors for Scheduling a Set of Real-Time Tasks: Upper and Lower Bounds; Technical Report Number 2007-535; Queen’s University: Kingston, ON, Canada, 2007. [Google Scholar]
- Dorin, F.; Richard, M.; Grolleau, E.; Richard, P. Minimizing the number of processors for real-time distributed systems. In Proceedings of the 16th International Conference on Real-Time and Network Systems (RTNS 2008), Rennes, France, 16–17 October 2008. [Google Scholar]
- Qamhieh, M.; Midonnet, S.; George, L. Graph-to-Segment Transformation Technique minimizing the number of processors for Real-time Multiprocessor Systems. In Proceedings of the Workshop on Power, Energy, and Temperature Aware Real-Time Systems (PETARS), San Juan, Puerto Rico, 4 December 2012. [Google Scholar]
- Nelissen, G.; Berten, V.; Goossens, J.; Milojevic, D. Techniques Optimizing the Number of Processors to Schedule Multi-threaded Tasks. In Proceedings of the 2012 24th Euromicro Conference on Real-Time Systems, Pisa, Italy, 11–13 July 2012; pp. 321–330. [Google Scholar] [CrossRef]
- Pinheiro, E.; Bianchini, R.; Carrera, E.V.; Heath, T. Dynamic Cluster Reconfiguration for Power and Performance. In Compilers and Operating Systems for Low Power; Benini, L., Kandemir, M., Ramanujam, J., Eds.; Springer: Boston, MA, USA, 2003; pp. 75–93. [Google Scholar] [CrossRef]
- Kunkle, D.; Schindler, J. A Load Balancing Framework for Clustered Storage Systems. In Proceedings of the High Performance Computing—HiPC 2008, Bangalore, India, 17–20 December 2008; Sadayappan, P., Parashar, M., Badrinath, R., Prasanna, V.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 57–72. [Google Scholar]
- Lang, W.; Patel, J.M.; Naughton, J.F. On energy management, load balancing and replication. SIGMOD Rec. 2010, 38, 35–42. [Google Scholar] [CrossRef]
- Pinheiro, E.; Bianchini, R.; Carrera, E.V.; Heath, T. Load balancing and unbalancing for power and performance in cluster-based systems. In Proceedings of the 2nd Workshop on Compilers and Operating Systems for Low Power, Barcelona, Spain, 9 September 2001. [Google Scholar]
- Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; Wiley Interscience Series in Systems and Optimization; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Abraham, A.; Jain, L.; Goldberg, R. Evolutionary Multiobjective Optimization: Theoretical Advances and Applications; Advanced Information and Knowledge Processing; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Coello, C.; Lamont, G.; van Veldhuizen, D. Evolutionary Algorithms for Solving Multi-Objective Problems; Genetic and Evolutionary Computation; Springer: Boston, MA, USA, 2014. [Google Scholar]
- Price, K.; Storn, R.; Lampinen, J. Differential Evolution: A Practical Approach to Global Optimization; Natural Computing Series; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Qing, A. Differential Evolution: Fundamentals and Applications in Electrical Engineering; IEEE Press: Piscataway, NJ, USA, 2009. [Google Scholar]
- Clerc, M. Particle Swarm Optimization; ISTE: London, UK, 2013. [Google Scholar]
- Durillo, J.J.; Nebro, A.J. jMetal: A Java framework for multi-objective optimization. Adv. Eng. Softw. 2011, 42, 760–771. [Google Scholar] [CrossRef]
- Nebro, A.J.; Durillo, J.J.; Vergne, M. Redesigning the jMetal Multi-Objective Optimization Framework. In Proceedings of the GECCO Companion ’15: Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, Madrid, Spain, 11–15 July 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 1093–1100. [Google Scholar] [CrossRef]
- Santiago, A.; Terán-Villanueva, J.D.; Martínez, S.I.; Rocha, J.A.C.; Menchaca, J.L.; Berrones, M.G.T.; Ponce-Flores, M. GRASP and Iterated Local Search-Based Cellular Processing algorithm for Precedence-Constraint Task List Scheduling on Heterogeneous Systems. Appl. Sci. 2020, 10, 7500. [Google Scholar] [CrossRef]
- Soto, C.; Santiago, A.; Fraire, H.; Dorronsoro, B. Optimal Scheduling for Precedence-Constrained Applications on Heterogeneous Machines. In Proceedings of the 2018 International Conference on Multidisciplinary Sciences, Shanghai, China, 5–8 August 2018. [Google Scholar]
- Pineda, A.A.S. Estrategias de Búsqueda Local Para el Problema de Programación de Tareas en Sistemas de Procesamiento Paralelo. Ph.D. Thesis, Instituto Tecnológico de Ciudad Madero Cd Madero, Madero, Mexico, 2013. [Google Scholar]
- Pineda, A.A.S.; Pecero, J.; Huacuja, H.; Barbosa, J.; Bouvry, P. An iterative local search algorithm for scheduling precedence-constrained applications on heterogeneous machines. In Proceedings of the 6th Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA 2013), Ghent, Belgium, 27–29 August 2013; pp. 27–29. [Google Scholar]
- Pecero, J.E.; Huacuja, H.J.F.; Bouvry, P.; Pineda, A.A.S.; Locés, M.C.L.; Barbosa, J.J.G. On the energy optimization for precedence constrained applications using local search algorithms. In Proceedings of the 2012 International Conference on High Performance Computing & Simulation (HPCS), Madrid, Spain, 2–6 July 2012; pp. 133–139. [Google Scholar] [CrossRef]
- Pineda, A.A.S.; Zúñiga, Á.R.; Huacuja, H.J.F. Algoritmos exactos de calendarización de tareas para programas paralelos en sistemas de procesamiento heterogéneos. In Proceedings of the VI Encuentro de Investigadores en el Instituto Tecnológico de Ciudad Madero, Ciudad Madero, Mexico, 2012; p. 8. Available online: https://www.researchgate.net/publication/327979984_Algoritmos_exactos_de_calendarizacion_de_tareas_para_programas_paralelos_en_sistemas_de_procesamiento_heterogeneos (accessed on 22 November 2024).
- Panichella, A. An adaptive evolutionary algorithm based on non-euclidean geometry for many-objective optimization. In Proceedings of the GECCO ’19: Genetic and Evolutionary Computation Conference, Prague, Czech Republic, 13–17 July 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 595–603. [Google Scholar] [CrossRef]
- Panichella, A. An improved Pareto front modeling algorithm for large-scale many-objective optimization. In Proceedings of the GECCO ’22: Genetic and Evolutionary Computation Conference, Boston, MA, USA, 9–13 July 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 565–573. [Google Scholar] [CrossRef]
- Saborido, R.; Ruiz, A.B.; Luque, M. Global WASF-GA: An Evolutionary Algorithm in Multiobjective Optimization to Approximate the Whole Pareto Optimal Front. Evol. Comput. 2017, 25, 309–349. [Google Scholar] [CrossRef]
- Ruiz, A.B.; Saborido, R.; Luque, M. A preference-based evolutionary algorithm for multiobjective optimization: The weighting achievement scalarizing function genetic algorithm. J. Glob. Optim. 2015, 62, 101–129. [Google Scholar] [CrossRef]
- Santiago, A.; Huacuja, H.J.F.; Dorronsoro, B.; Pecero, J.E.; Santillan, C.G.; Barbosa, J.J.G.; Monterrubio, J.C.S. A Survey of Decomposition Methods for Multi-objective Optimization. In Recent Advances on Hybrid Approaches for Designing Intelligent Systems; Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 453–465. [Google Scholar] [CrossRef]
- Nebro, A.J.; Durillo, J.J.; Luna, F.; Dorronsoro, B.; Alba, E. MOCell: A Cellular Genetic Algorithm for Multiobjective Optimization. Int. J. Intell. Syst. 2009, 24, 726–746. [Google Scholar] [CrossRef]
- Gómez, R.H.; Coello, C.A.C. MOMBI: A new metaheuristic for many-objective optimization based on the R2 indicator. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 2488–2495. [Google Scholar] [CrossRef]
- Hernández Gómez, R.; Coello Coello, C.A. Improved Metaheuristic Based on the R2 Indicator for Many-Objective Optimization. In Proceedings of the GECCO ’15: 2015 Annual Conference on Genetic and Evolutionary Computation, Madrid, Spain, 11–15 July 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 679–686. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Beume, N.; Naujoks, B.; Emmerich, M. SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 2007, 181, 1653–1669. [Google Scholar] [CrossRef]
- Syswerda, G. Uniform crossover in genetic algorithms. In Proceedings of the ICGA 1989, Washington, DC, USA, 4–7 June 1989; Volume 3. [Google Scholar]
- Falkenauer, E. The worth of the uniform [uniform crossover]. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; Volume 1, pp. 776–782. [Google Scholar] [CrossRef]
- Fleischer, M. The Measure of Pareto Optima Applications to Multi-objective Metaheuristics. In Proceedings of the Evolutionary Multi-Criterion Optimization, Second International Conference, EMO 2003, Faro, Portugal, 8–11 April 2003; Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 519–533. [Google Scholar]
- Ishibuchi, H.; Masuda, H.; Nojima, Y. A Study on Performance Evaluation Ability of a Modified Inverted Generational Distance Indicator. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, Madrid, Spain, 11–15 July 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 695–702. [Google Scholar] [CrossRef]
- Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.; da Fonseca, V. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evol. Comput. 2003, 7, 117–132. [Google Scholar] [CrossRef]
- Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures; Chapman and Hall/CRC: Boca Raton, FL, USA, 2003. [Google Scholar]
- Corder, G.W.; Foreman, D.I. Nonparametric Statistics for Non-Statisticians; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
Speed Pairs 1 | Speed Pairs 2 | Speed Pairs 3 | |||
---|---|---|---|---|---|
1.75 | 1.0 | 1.50 | 1.0 | 2.20 | 1.0 |
1.40 | 0.80 | 1.40 | 0.90 | 1.90 | 0.85 |
1.20 | 0.60 | 1.30 | 0.80 | 1.60 | 0.65 |
0.90 | 0.40 | 1.20 | 0.70 | 1.30 | 0.50 |
- | - | 1.10 | 0.60 | 1.00 | 0.35 |
- | - | 1.00 | 0.50 | - | - |
- | - | 0.90 | 0.40 | - | - |
AGEMOEA | AGEMOEA2 | |
---|---|---|
Population size: | 100 | 100 |
Selection: | Binary Tournament | Binary Tournament |
Recombination: | Uniform: | Uniform: |
Mutation: | Boundary: | Boundary: |
MOMBI | MOMBI2 | |
Population size: | 101 | 101 |
Selection: | Binary Tournament | Binary Tournament |
Recombination: | Uniform: | Uniform: |
Mutation: | Boundary: | Boundary: |
SMS-EMOA | MOCell | |
Archive size: | - | 100 |
Population size: | 100 | 100 |
Selection: | Random | Binary Tournament |
Recombination: | Uniform: | Uniform: |
Mutation: | Boundary: | Boundary: |
GWASFGA | NSGA2 | |
Population size: | 100 | 100 |
Selection: | Binary Tournament | Binary Tournament |
Recombination: | Uniform: | Uniform: |
Mutation: | Boundary: | Boundary: |
Problem | AGEMOEA | AGEMOEA2 | GWASFGA | MOCell | MOMBI | MOMBI2 | NSGA2 | SMS-EMOA |
---|---|---|---|---|---|---|---|---|
Fpppp-8-334-0.1-0.1 | ||||||||
Fpppp-8-334-0.1-0.5 | ||||||||
Fpppp-8-334-0.1-1 | ||||||||
Fpppp-8-334-0.1-5 | ||||||||
Fpppp-8-334-0.1-10 | ||||||||
Fpppp-8-334-0.25-0.1 | ||||||||
Fpppp-8-334-0.25-0.5 | ||||||||
Fpppp-8-334-0.25-1 | ||||||||
Fpppp-8-334-0.25-5 | ||||||||
Fpppp-8-334-0.25-10 | ||||||||
Fpppp-8-334-0.5-0.1 | ||||||||
Fpppp-8-334-0.5-0.5 | ||||||||
Fpppp-8-334-0.5-1 | ||||||||
Fpppp-8-334-0.5-5 | ||||||||
Fpppp-8-334-0.5-10 | ||||||||
Fpppp-8-334-0.75-0.1 | ||||||||
Fpppp-8-334-0.75-0.5 | ||||||||
Fpppp-8-334-0.75-1 | ||||||||
Fpppp-8-334-0.75-5 | ||||||||
Fpppp-8-334-0.75-10 | ||||||||
Fpppp-8-334-1-0.1 | ||||||||
Fpppp-8-334-1-0.5 | ||||||||
Fpppp-8-334-1-1 | ||||||||
Fpppp-8-334-1-5 | ||||||||
Fpppp-8-334-1-10 | ||||||||
Fpppp-16-334-0.1-0.1 | ||||||||
Fpppp-16-334-0.1-0.5 | ||||||||
Fpppp-16-334-0.1-1 | ||||||||
Fpppp-16-334-0.1-5 | ||||||||
Fpppp-16-334-0.1-10 | ||||||||
Fpppp-16-334-0.25-0.1 | ||||||||
Fpppp-16-334-0.25-0.5 | ||||||||
Fpppp-16-334-0.25-1 | ||||||||
Fpppp-16-334-0.25-5 | ||||||||
Fpppp-16-334-0.25-10 | ||||||||
Fpppp-16-334-0.5-0.1 | ||||||||
Fpppp-16-334-0.5-0.5 | ||||||||
Fpppp-16-334-0.5-1 | ||||||||
Fpppp-16-334-0.5-5 | ||||||||
Fpppp-16-334-0.5-10 | ||||||||
Fpppp-16-334-0.75-0.1 | ||||||||
Fpppp-16-334-0.75-0.5 | ||||||||
Fpppp-16-334-0.75-1 | ||||||||
Fpppp-16-334-0.75-5 | ||||||||
Fpppp-16-334-0.75-10 | ||||||||
Fpppp-16-334-1-0.1 | ||||||||
Fpppp-16-334-1-0.5 | ||||||||
Fpppp-16-334-1-1 | ||||||||
Fpppp-16-334-1-5 | ||||||||
Fpppp-16-334-1-10 | ||||||||
Fpppp-32-334-0.1-0.1 | ||||||||
Fpppp-32-334-0.1-0.5 | ||||||||
Fpppp-32-334-0.1-1 | ||||||||
Fpppp-32-334-0.1-5 | ||||||||
Fpppp-32-334-0.1-10 | ||||||||
Fpppp-32-334-0.25-0.1 | ||||||||
Fpppp-32-334-0.25-0.5 | ||||||||
Fpppp-32-334-0.25-1 | ||||||||
Fpppp-32-334-0.25-5 | ||||||||
Fpppp-32-334-0.25-10 | ||||||||
Fpppp-32-334-0.5-0.1 | ||||||||
Fpppp-32-334-0.5-0.5 | ||||||||
Fpppp-32-334-0.5-1 | ||||||||
Fpppp-32-334-0.5-5 | ||||||||
Fpppp-32-334-0.5-10 | ||||||||
Fpppp-32-334-0.75-0.1 | ||||||||
Fpppp-32-334-0.75-0.5 | ||||||||
Fpppp-32-334-0.75-1 | ||||||||
Fpppp-32-334-0.75-5 | ||||||||
Fpppp-32-334-0.75-10 | ||||||||
Fpppp-32-334-1-0.1 | ||||||||
Fpppp-32-334-1-0.5 | ||||||||
Fpppp-32-334-1-1 | ||||||||
Fpppp-32-334-1-5 | ||||||||
Fpppp-32-334-1-10 | ||||||||
Fpppp-64-334-0.1-0.1 | ||||||||
Fpppp-64-334-0.1-0.5 | ||||||||
Fpppp-64-334-0.1-1 | ||||||||
Fpppp-64-334-0.1-5 | ||||||||
Fpppp-64-334-0.1-10 | ||||||||
Fpppp-64-334-0.25-0.1 | ||||||||
Fpppp-64-334-0.25-0.5 | ||||||||
Fpppp-64-334-0.25-1 | ||||||||
Fpppp-64-334-0.25-5 | ||||||||
Fpppp-64-334-0.25-10 | ||||||||
Fpppp-64-334-0.5-0.1 | ||||||||
Fpppp-64-334-0.5-0.5 | ||||||||
Fpppp-64-334-0.5-1 | ||||||||
Fpppp-64-334-0.5-5 | ||||||||
Fpppp-64-334-0.5-10 | ||||||||
Fpppp-64-334-0.75-0.1 | ||||||||
Fpppp-64-334-0.75-0.5 | ||||||||
Fpppp-64-334-0.75-1 | ||||||||
Fpppp-64-334-0.75-5 | ||||||||
Fpppp-64-334-0.75-10 | ||||||||
Fpppp-64-334-1-0.1 | ||||||||
Fpppp-64-334-1-0.5 | ||||||||
Fpppp-64-334-1-1 | ||||||||
Fpppp-64-334-1-5 | ||||||||
Fpppp-64-334-1-10 |
Problem | AGEMOEA | AGEMOEA2 | GWASFGA | MOCell | MOMBI | MOMBI2 | NSGA2 | SMS-EMOA |
---|---|---|---|---|---|---|---|---|
LIGO-8-76-0.1-0.1 | ||||||||
LIGO-8-76-0.1-0.5 | ||||||||
LIGO-8-76-0.1-1 | ||||||||
LIGO-8-76-0.1-5 | ||||||||
LIGO-8-76-0.1-10 | ||||||||
LIGO-8-76-0.25-0.1 | ||||||||
LIGO-8-76-0.25-0.5 | ||||||||
LIGO-8-76-0.25-1 | ||||||||
LIGO-8-76-0.25-5 | ||||||||
LIGO-8-76-0.25-10 | ||||||||
LIGO-8-76-0.5-0.1 | ||||||||
LIGO-8-76-0.5-0.5 | ||||||||
LIGO-8-76-0.5-1 | ||||||||
LIGO-8-76-0.5-5 | ||||||||
LIGO-8-76-0.5-10 | ||||||||
LIGO-8-76-0.75-0.1 | ||||||||
LIGO-8-76-0.75-0.5 | ||||||||
LIGO-8-76-0.75-1 | ||||||||
LIGO-8-76-0.75-5 | ||||||||
LIGO-8-76-0.75-10 | ||||||||
LIGO-8-76-1-0.1 | ||||||||
LIGO-8-76-1-0.5 | ||||||||
LIGO-8-76-1-1 | ||||||||
LIGO-8-76-1-5 | ||||||||
LIGO-8-76-1-10 | ||||||||
LIGO-16-76-0.1-0.1 | ||||||||
LIGO-16-76-0.1-0.5 | ||||||||
LIGO-16-76-0.1-1 | ||||||||
LIGO-16-76-0.1-5 | ||||||||
LIGO-16-76-0.1-10 | ||||||||
LIGO-16-76-0.25-0.1 | ||||||||
LIGO-16-76-0.25-0.5 | ||||||||
LIGO-16-76-0.25-1 | ||||||||
LIGO-16-76-0.25-5 | ||||||||
LIGO-16-76-0.25-10 | ||||||||
LIGO-16-76-0.5-0.1 | ||||||||
LIGO-16-76-0.5-0.5 | ||||||||
LIGO-16-76-0.5-1 | ||||||||
LIGO-16-76-0.5-5 | ||||||||
LIGO-16-76-0.5-10 | ||||||||
LIGO-16-76-0.75-0.1 | ||||||||
LIGO-16-76-0.75-0.5 | ||||||||
LIGO-16-76-0.75-1 | ||||||||
LIGO-16-76-0.75-5 | ||||||||
LIGO-16-76-0.75-10 | ||||||||
LIGO-16-76-1-0.1 | ||||||||
LIGO-16-76-1-0.5 | ||||||||
LIGO-16-76-1-1 | ||||||||
LIGO-16-76-1-5 | ||||||||
LIGO-16-76-1-10 | ||||||||
LIGO-32-76-0.1-0.1 | ||||||||
LIGO-32-76-0.1-0.5 | ||||||||
LIGO-32-76-0.1-1 | ||||||||
LIGO-32-76-0.1-5 | ||||||||
LIGO-32-76-0.1-10 | ||||||||
LIGO-32-76-0.25-0.1 | ||||||||
LIGO-32-76-0.25-0.5 | ||||||||
LIGO-32-76-0.25-1 | ||||||||
LIGO-32-76-0.25-5 | ||||||||
LIGO-32-76-0.25-10 | ||||||||
LIGO-32-76-0.5-0.1 | ||||||||
LIGO-32-76-0.5-0.5 | ||||||||
LIGO-32-76-0.5-1 | ||||||||
LIGO-32-76-0.5-5 | ||||||||
LIGO-32-76-0.5-10 | ||||||||
LIGO-32-76-0.75-0.1 | ||||||||
LIGO-32-76-0.75-0.5 | ||||||||
LIGO-32-76-0.75-1 | ||||||||
LIGO-32-76-0.75-5 | ||||||||
LIGO-32-76-0.75-10 | ||||||||
LIGO-32-76-1-0.1 | ||||||||
LIGO-32-76-1-0.5 | ||||||||
LIGO-32-76-1-1 | ||||||||
LIGO-32-76-1-5 | ||||||||
LIGO-32-76-1-10 | ||||||||
LIGO-64-76-0.1-0.1 | ||||||||
LIGO-64-76-0.1-0.5 | ||||||||
LIGO-64-76-0.1-1 | ||||||||
LIGO-64-76-0.1-5 | ||||||||
LIGO-64-76-0.1-10 | ||||||||
LIGO-64-76-0.25-0.1 | ||||||||
LIGO-64-76-0.25-0.5 | ||||||||
LIGO-64-76-0.25-1 | ||||||||
LIGO-64-76-0.25-5 | ||||||||
LIGO-64-76-0.25-10 | ||||||||
LIGO-64-76-0.5-0.1 | ||||||||
LIGO-64-76-0.5-0.5 | ||||||||
LIGO-64-76-0.5-1 | ||||||||
LIGO-64-76-0.5-5 | ||||||||
LIGO-64-76-0.5-10 | ||||||||
LIGO-64-76-0.75-0.1 | ||||||||
LIGO-64-76-0.75-0.5 | ||||||||
LIGO-64-76-0.75-1 | ||||||||
LIGO-64-76-0.75-5 | ||||||||
LIGO-64-76-0.75-10 | ||||||||
LIGO-64-76-1-0.1 | ||||||||
LIGO-64-76-1-0.5 | ||||||||
LIGO-64-76-1-1 | ||||||||
LIGO-64-76-1-5 | ||||||||
LIGO-64-76-1-10 |
Problem | AGEMOEA | AGEMOEA2 | GWASFGA | MOCell | MOMBI | MOMBI2 | NSGA2 | SMS-EMOA |
---|---|---|---|---|---|---|---|---|
Robot-8-88-0.1-0.1 | ||||||||
Robot-8-88-0.1-0.5 | ||||||||
Robot-8-88-0.1-1 | ||||||||
Robot-8-88-0.1-5 | ||||||||
Robot-8-88-0.1-10 | ||||||||
Robot-8-88-0.25-0.1 | ||||||||
Robot-8-88-0.25-0.5 | ||||||||
Robot-8-88-0.25-1 | ||||||||
Robot-8-88-0.25-5 | ||||||||
Robot-8-88-0.25-10 | ||||||||
Robot-8-88-0.5-0.1 | ||||||||
Robot-8-88-0.5-0.5 | ||||||||
Robot-8-88-0.5-1 | ||||||||
Robot-8-88-0.5-5 | ||||||||
Robot-8-88-0.5-10 | ||||||||
Robot-8-88-0.75-0.1 | ||||||||
Robot-8-88-0.75-0.5 | ||||||||
Robot-8-88-0.75-1 | ||||||||
Robot-8-88-0.75-5 | ||||||||
Robot-8-88-0.75-10 | ||||||||
Robot-8-88-1-0.1 | ||||||||
Robot-8-88-1-0.5 | ||||||||
Robot-8-88-1-1 | ||||||||
Robot-8-88-1-5 | ||||||||
Robot-8-88-1-10 | ||||||||
Robot-16-88-0.1-0.1 | ||||||||
Robot-16-88-0.1-0.5 | ||||||||
Robot-16-88-0.1-1 | ||||||||
Robot-16-88-0.1-5 | ||||||||
Robot-16-88-0.1-10 | ||||||||
Robot-16-88-0.25-0.1 | ||||||||
Robot-16-88-0.25-0.5 | ||||||||
Robot-16-88-0.25-1 | ||||||||
Robot-16-88-0.25-5 | ||||||||
Robot-16-88-0.5-0.1 | ||||||||
Robot-16-88-0.5-0.5 | ||||||||
Robot-16-88-0.5-1 | ||||||||
Robot-16-88-0.5-5 | ||||||||
Robot-16-88-0.5-10 | ||||||||
Robot-16-88-0.75-0.1 | ||||||||
Robot-16-88-0.75-0.5 | ||||||||
Robot-16-88-0.75-1 | ||||||||
Robot-16-88-0.75-5 | ||||||||
Robot-16-88-0.75-10 | ||||||||
Robot-16-88-1-0.1 | ||||||||
Robot-16-88-1-0.5 | ||||||||
Robot-16-88-1-1 | ||||||||
Robot-16-88-1-5 | ||||||||
Robot-16-88-1-10 | ||||||||
Robot-32-88-0.1-0.1 | ||||||||
Robot-32-88-0.1-0.5 | ||||||||
Robot-32-88-0.1-1 | ||||||||
Robot-32-88-0.1-5 | ||||||||
Robot-32-88-0.1-10 | ||||||||
Robot-32-88-0.25-0.1 | ||||||||
Robot-32-88-0.25-0.5 | ||||||||
Robot-32-88-0.25-1 | ||||||||
Robot-32-88-0.25-5 | ||||||||
Robot-32-88-0.25-10 | ||||||||
Robot-32-88-0.5-0.1 | ||||||||
Robot-32-88-0.5-0.5 | ||||||||
Robot-32-88-0.5-1 | ||||||||
Robot-32-88-0.5-5 | ||||||||
Robot-32-88-0.5-10 | ||||||||
Robot-32-88-0.75-0.1 | ||||||||
Robot-32-88-0.75-0.5 | ||||||||
Robot-32-88-0.75-1 | ||||||||
Robot-32-88-0.75-5 | ||||||||
Robot-32-88-0.75-10 | ||||||||
Robot-32-88-1-0.1 | ||||||||
Robot-32-88-1-0.5 | ||||||||
Robot-32-88-1-1 | ||||||||
Robot-32-88-1-5 | ||||||||
Robot-32-88-1-10 | ||||||||
Robot-64-88-0.1-0.1 | ||||||||
Robot-64-88-0.1-0.5 | ||||||||
Robot-64-88-0.1-1 | ||||||||
Robot-64-88-0.1-5 | ||||||||
Robot-64-88-0.1-10 | ||||||||
Robot-64-88-0.25-0.1 | ||||||||
Robot-64-88-0.25-0.5 | ||||||||
Robot-64-88-0.25-1 | ||||||||
Robot-64-88-0.25-5 | ||||||||
Robot-64-88-0.25-10 | ||||||||
Robot-64-88-0.5-0.1 | ||||||||
Robot-64-88-0.5-0.5 | ||||||||
Robot-64-88-0.5-1 | ||||||||
Robot-64-88-0.5-5 | ||||||||
Robot-64-88-0.5-10 | ||||||||
Robot-64-88-0.75-0.1 | ||||||||
Robot-64-88-0.75-0.5 | ||||||||
Robot-64-88-0.75-1 | ||||||||
Robot-64-88-0.75-5 | ||||||||
Robot-64-88-0.75-10 | ||||||||
Robot-64-88-1-0.1 | ||||||||
Robot-64-88-1-0.5 | ||||||||
Robot-64-88-1-1 | ||||||||
Robot-64-88-1-5 | ||||||||
Robot-64-88-1-10 |
Problem | AGEMOEA | AGEMOEA2 | GWASFGA | MOCell | MOMBI | MOMBI2 | NSGA2 | SMS-EMOA |
---|---|---|---|---|---|---|---|---|
Sparse-8-96-0.1-0.1 | ||||||||
Sparse-8-96-0.1-0.5 | ||||||||
Sparse-8-96-0.1-1 | ||||||||
Sparse-8-96-0.1-5 | ||||||||
Sparse-8-96-0.1-10 | ||||||||
Sparse-8-96-0.25-0.1 | ||||||||
Sparse-8-96-0.25-0.5 | ||||||||
Sparse-8-96-0.25-1 | ||||||||
Sparse-8-96-0.25-5 | ||||||||
Sparse-8-96-0.25-10 | ||||||||
Sparse-8-96-0.5-0.1 | ||||||||
Sparse-8-96-0.5-0.5 | ||||||||
Sparse-8-96-0.5-1 | ||||||||
Sparse-8-96-0.5-5 | ||||||||
Sparse-8-96-0.5-10 | ||||||||
Sparse-8-96-0.75-0.1 | ||||||||
Sparse-8-96-0.75-0.5 | ||||||||
Sparse-8-96-0.75-1 | ||||||||
Sparse-8-96-0.75-5 | ||||||||
Sparse-8-96-0.75-10 | ||||||||
Sparse-8-96-1-0.1 | ||||||||
Sparse-8-96-1-0.5 | ||||||||
Sparse-8-96-1-1 | ||||||||
Sparse-8-96-1-5 | ||||||||
Sparse-8-96-1-10 | ||||||||
Sparse-16-96-0.1-0.1 | ||||||||
Sparse-16-96-0.1-0.5 | ||||||||
Sparse-16-96-0.1-1 | ||||||||
Sparse-16-96-0.1-5 | ||||||||
Sparse-16-96-0.1-10 | ||||||||
Sparse-16-96-0.25-0.1 | ||||||||
Sparse-16-96-0.25-0.5 | ||||||||
Sparse-16-96-0.25-1 | ||||||||
Sparse-16-96-0.25-5 | ||||||||
Sparse-16-96-0.25-10 | ||||||||
Sparse-16-96-0.5-0.1 | ||||||||
Sparse-16-96-0.5-0.5 | ||||||||
Sparse-16-96-0.5-1 | ||||||||
Sparse-16-96-0.5-5 | ||||||||
Sparse-16-96-0.5-10 | ||||||||
Sparse-16-96-0.75-0.1 | ||||||||
Sparse-16-96-0.75-0.5 | ||||||||
Sparse-16-96-0.75-1 | ||||||||
Sparse-16-96-0.75-5 | ||||||||
Sparse-16-96-0.75-10 | ||||||||
Sparse-16-96-1-0.1 | ||||||||
Sparse-16-96-1-0.5 | ||||||||
Sparse-16-96-1-1 | ||||||||
Sparse-16-96-1-5 | ||||||||
Sparse-16-96-1-10 | ||||||||
Sparse-32-96-0.1-0.1 | ||||||||
Sparse-32-96-0.1-0.5 | ||||||||
Sparse-32-96-0.1-1 | ||||||||
Sparse-32-96-0.1-5 | ||||||||
Sparse-32-96-0.1-10 | ||||||||
Sparse-32-96-0.25-0.1 | ||||||||
Sparse-32-96-0.25-0.5 | ||||||||
Sparse-32-96-0.25-1 | ||||||||
Sparse-32-96-0.25-5 | ||||||||
Sparse-32-96-0.25-10 | ||||||||
Sparse-32-96-0.5-0.1 | ||||||||
Sparse-32-96-0.5-0.5 | ||||||||
Sparse-32-96-0.5-1 | ||||||||
Sparse-32-96-0.5-5 | ||||||||
Sparse-32-96-0.5-10 | ||||||||
Sparse-32-96-0.75-0.1 | ||||||||
Sparse-32-96-0.75-0.5 | ||||||||
Sparse-32-96-0.75-1 | ||||||||
Sparse-32-96-0.75-5 | ||||||||
Sparse-32-96-0.75-10 | ||||||||
Sparse-32-96-1-0.1 | ||||||||
Sparse-32-96-1-0.5 | ||||||||
Sparse-32-96-1-1 | ||||||||
Sparse-32-96-1-5 | ||||||||
Sparse-32-96-1-10 | ||||||||
Sparse-64-96-0.1-0.1 | ||||||||
Sparse-64-96-0.1-0.5 | ||||||||
Sparse-64-96-0.1-1 | ||||||||
Sparse-64-96-0.1-5 | ||||||||
Sparse-64-96-0.1-10 | ||||||||
Sparse-64-96-0.25-0.1 | ||||||||
Sparse-64-96-0.25-0.5 | ||||||||
Sparse-64-96-0.25-1 | ||||||||
Sparse-64-96-0.25-5 | ||||||||
Sparse-64-96-0.25-10 | ||||||||
Sparse-64-96-0.5-0.1 | ||||||||
Sparse-64-96-0.5-0.5 | ||||||||
Sparse-64-96-0.5-1 | ||||||||
Sparse-64-96-0.5-5 | ||||||||
Sparse-64-96-0.5-10 | ||||||||
Sparse-64-96-0.75-0.1 | ||||||||
Sparse-64-96-0.75-0.5 | ||||||||
Sparse-64-96-0.75-1 | ||||||||
Sparse-64-96-0.75-5 | ||||||||
Sparse-64-96-0.75-10 | ||||||||
Sparse-64-96-1-0.1 | ||||||||
Sparse-64-96-1-0.5 | ||||||||
Sparse-64-96-1-1 | ||||||||
Sparse-64-96-1-5 | ||||||||
Sparse-64-96-1-10 |
Problem | AGEMOEA | AGEMOEA2 | GWASFGA | MOCell | MOMBI | MOMBI2 | NSGA2 | SMS-EMOA |
---|---|---|---|---|---|---|---|---|
Fpppp-8-334-0.1-0.1 | ||||||||
Fpppp-8-334-0.1-0.5 | ||||||||
Fpppp-8-334-0.1-1 | ||||||||
Fpppp-8-334-0.1-5 | ||||||||
Fpppp-8-334-0.1-10 | ||||||||
Fpppp-8-334-0.25-0.1 | ||||||||
Fpppp-8-334-0.25-0.5 | ||||||||
Fpppp-8-334-0.25-1 | ||||||||
Fpppp-8-334-0.25-5 | ||||||||
Fpppp-8-334-0.25-10 | ||||||||
Fpppp-8-334-0.5-0.1 | ||||||||
Fpppp-8-334-0.5-0.5 | ||||||||
Fpppp-8-334-0.5-1 | ||||||||
Fpppp-8-334-0.5-5 | ||||||||
Fpppp-8-334-0.5-10 | ||||||||
Fpppp-8-334-0.75-0.1 | ||||||||
Fpppp-8-334-0.75-0.5 | ||||||||
Fpppp-8-334-0.75-1 | ||||||||
Fpppp-8-334-0.75-5 | ||||||||
Fpppp-8-334-0.75-10 | ||||||||
Fpppp-8-334-1-0.1 | ||||||||
Fpppp-8-334-1-0.5 | ||||||||
Fpppp-8-334-1-1 | ||||||||
Fpppp-8-334-1-5 | ||||||||
Fpppp-8-334-1-10 | ||||||||
Fpppp-16-334-0.1-0.1 | ||||||||
Fpppp-16-334-0.1-0.5 | ||||||||
Fpppp-16-334-0.1-1 | ||||||||
Fpppp-16-334-0.1-5 | ||||||||
Fpppp-16-334-0.1-10 | ||||||||
Fpppp-16-334-0.25-0.1 | ||||||||
Fpppp-16-334-0.25-0.5 | ||||||||
Fpppp-16-334-0.25-1 | ||||||||
Fpppp-16-334-0.25-5 | ||||||||
Fpppp-16-334-0.25-10 | ||||||||
Fpppp-16-334-0.5-0.1 | ||||||||
Fpppp-16-334-0.5-0.5 | ||||||||
Fpppp-16-334-0.5-1 | ||||||||
Fpppp-16-334-0.5-5 | ||||||||
Fpppp-16-334-0.5-10 | ||||||||
Fpppp-16-334-0.75-0.1 | ||||||||
Fpppp-16-334-0.75-0.5 | ||||||||
Fpppp-16-334-0.75-1 | ||||||||
Fpppp-16-334-0.75-5 | ||||||||
Fpppp-16-334-0.75-10 | ||||||||
Fpppp-16-334-1-0.1 | ||||||||
Fpppp-16-334-1-0.5 | ||||||||
Fpppp-16-334-1-1 | ||||||||
Fpppp-16-334-1-5 | ||||||||
Fpppp-16-334-1-10 | ||||||||
Fpppp-32-334-0.1-0.1 | ||||||||
Fpppp-32-334-0.1-0.5 | ||||||||
Fpppp-32-334-0.1-1 | ||||||||
Fpppp-32-334-0.1-5 | ||||||||
Fpppp-32-334-0.1-10 | ||||||||
Fpppp-32-334-0.25-0.1 | ||||||||
Fpppp-32-334-0.25-0.5 | ||||||||
Fpppp-32-334-0.25-1 | ||||||||
Fpppp-32-334-0.25-5 | ||||||||
Fpppp-32-334-0.25-10 | ||||||||
Fpppp-32-334-0.5-0.1 | ||||||||
Fpppp-32-334-0.5-0.5 | ||||||||
Fpppp-32-334-0.5-1 | ||||||||
Fpppp-32-334-0.5-5 | ||||||||
Fpppp-32-334-0.5-10 | ||||||||
Fpppp-32-334-0.75-0.1 | ||||||||
Fpppp-32-334-0.75-0.5 | ||||||||
Fpppp-32-334-0.75-1 | ||||||||
Fpppp-32-334-0.75-5 | ||||||||
Fpppp-32-334-0.75-10 | ||||||||
Fpppp-32-334-1-0.1 | ||||||||
Fpppp-32-334-1-0.5 | ||||||||
Fpppp-32-334-1-1 | ||||||||
Fpppp-32-334-1-5 | ||||||||
Fpppp-32-334-1-10 | ||||||||
Fpppp-64-334-0.1-0.1 | ||||||||
Fpppp-64-334-0.1-0.5 | ||||||||
Fpppp-64-334-0.1-1 | ||||||||
Fpppp-64-334-0.1-5 | ||||||||
Fpppp-64-334-0.1-10 | ||||||||
Fpppp-64-334-0.25-0.1 | ||||||||
Fpppp-64-334-0.25-0.5 | ||||||||
Fpppp-64-334-0.25-1 | ||||||||
Fpppp-64-334-0.25-5 | ||||||||
Fpppp-64-334-0.25-10 | ||||||||
Fpppp-64-334-0.5-0.1 | ||||||||
Fpppp-64-334-0.5-0.5 | ||||||||
Fpppp-64-334-0.5-1 | ||||||||
Fpppp-64-334-0.5-5 | ||||||||
Fpppp-64-334-0.5-10 | ||||||||
Fpppp-64-334-0.75-0.1 | ||||||||
Fpppp-64-334-0.75-0.5 | ||||||||
Fpppp-64-334-0.75-1 | ||||||||
Fpppp-64-334-0.75-5 | ||||||||
Fpppp-64-334-0.75-10 | ||||||||
Fpppp-64-334-1-0.1 | ||||||||
Fpppp-64-334-1-0.5 | ||||||||
Fpppp-64-334-1-1 | ||||||||
Fpppp-64-334-1-5 | ||||||||
Fpppp-64-334-1-10 |
Problem | AGEMOEA | AGEMOEA2 | GWASFGA | MOCell | MOMBI | MOMBI2 | NSGA2 | SMS-EMOA |
---|---|---|---|---|---|---|---|---|
LIGO-8-76-0.1-0.1 | ||||||||
LIGO-8-76-0.1-0.5 | ||||||||
LIGO-8-76-0.1-1 | ||||||||
LIGO-8-76-0.1-5 | ||||||||
LIGO-8-76-0.1-10 | ||||||||
LIGO-8-76-0.25-0.1 | ||||||||
LIGO-8-76-0.25-0.5 | ||||||||
LIGO-8-76-0.25-1 | ||||||||
LIGO-8-76-0.25-5 | ||||||||
LIGO-8-76-0.25-10 | ||||||||
LIGO-8-76-0.5-0.1 | ||||||||
LIGO-8-76-0.5-0.5 | ||||||||
LIGO-8-76-0.5-1 | ||||||||
LIGO-8-76-0.5-5 | ||||||||
LIGO-8-76-0.5-10 | ||||||||
LIGO-8-76-0.75-0.1 | ||||||||
LIGO-8-76-0.75-0.5 | ||||||||
LIGO-8-76-0.75-1 | ||||||||
LIGO-8-76-0.75-5 | ||||||||
LIGO-8-76-0.75-10 | ||||||||
LIGO-8-76-1-0.1 | ||||||||
LIGO-8-76-1-0.5 | ||||||||
LIGO-8-76-1-1 | ||||||||
LIGO-8-76-1-5 | ||||||||
LIGO-8-76-1-10 | ||||||||
LIGO-16-76-0.1-0.1 | ||||||||
LIGO-16-76-0.1-0.5 | ||||||||
LIGO-16-76-0.1-1 | ||||||||
LIGO-16-76-0.1-5 | ||||||||
LIGO-16-76-0.1-10 | ||||||||
LIGO-16-76-0.25-0.1 | ||||||||
LIGO-16-76-0.25-0.5 | ||||||||
LIGO-16-76-0.25-1 | ||||||||
LIGO-16-76-0.25-5 | ||||||||
LIGO-16-76-0.25-10 | ||||||||
LIGO-16-76-0.5-0.1 | ||||||||
LIGO-16-76-0.5-0.5 | ||||||||
LIGO-16-76-0.5-1 | ||||||||
LIGO-16-76-0.5-5 | ||||||||
LIGO-16-76-0.5-10 | ||||||||
LIGO-16-76-0.75-0.1 | ||||||||
LIGO-16-76-0.75-0.5 | ||||||||
LIGO-16-76-0.75-1 | ||||||||
LIGO-16-76-0.75-5 | ||||||||
LIGO-16-76-0.75-10 | ||||||||
LIGO-16-76-1-0.1 | ||||||||
LIGO-16-76-1-0.5 | ||||||||
LIGO-16-76-1-1 | ||||||||
LIGO-16-76-1-5 | ||||||||
LIGO-16-76-1-10 | ||||||||
LIGO-32-76-0.1-0.1 | ||||||||
LIGO-32-76-0.1-0.5 | ||||||||
LIGO-32-76-0.1-1 | ||||||||
LIGO-32-76-0.1-5 | ||||||||
LIGO-32-76-0.1-10 | ||||||||
LIGO-32-76-0.25-0.1 | ||||||||
LIGO-32-76-0.25-0.5 | ||||||||
LIGO-32-76-0.25-1 | ||||||||
LIGO-32-76-0.25-5 | ||||||||
LIGO-32-76-0.25-10 | ||||||||
LIGO-32-76-0.5-0.1 | ||||||||
LIGO-32-76-0.5-0.5 | ||||||||
LIGO-32-76-0.5-1 | ||||||||
LIGO-32-76-0.5-5 | ||||||||
LIGO-32-76-0.5-10 | ||||||||
LIGO-32-76-0.75-0.1 | ||||||||
LIGO-32-76-0.75-0.5 | ||||||||
LIGO-32-76-0.75-1 | ||||||||
LIGO-32-76-0.75-5 | ||||||||
LIGO-32-76-0.75-10 | ||||||||
LIGO-32-76-1-0.1 | ||||||||
LIGO-32-76-1-0.5 | ||||||||
LIGO-32-76-1-1 | ||||||||
LIGO-32-76-1-5 | ||||||||
LIGO-32-76-1-10 | ||||||||
LIGO-64-76-0.1-0.1 | ||||||||
LIGO-64-76-0.1-0.5 | ||||||||
LIGO-64-76-0.1-1 | ||||||||
LIGO-64-76-0.1-5 | ||||||||
LIGO-64-76-0.1-10 | ||||||||
LIGO-64-76-0.25-0.1 | ||||||||
LIGO-64-76-0.25-0.5 | ||||||||
LIGO-64-76-0.25-1 | ||||||||
LIGO-64-76-0.25-5 | ||||||||
LIGO-64-76-0.25-10 | ||||||||
LIGO-64-76-0.5-0.1 | ||||||||
LIGO-64-76-0.5-0.5 | ||||||||
LIGO-64-76-0.5-1 | ||||||||
LIGO-64-76-0.5-5 | ||||||||
LIGO-64-76-0.5-10 | ||||||||
LIGO-64-76-0.75-0.1 | ||||||||
LIGO-64-76-0.75-0.5 | ||||||||
LIGO-64-76-0.75-1 | ||||||||
LIGO-64-76-0.75-5 | ||||||||
LIGO-64-76-0.75-10 | ||||||||
LIGO-64-76-1-0.1 | ||||||||
LIGO-64-76-1-0.5 | ||||||||
LIGO-64-76-1-1 | ||||||||
LIGO-64-76-1-5 | ||||||||
LIGO-64-76-1-10 |
Problem | AGEMOEA | AGEMOEA2 | GWASFGA | MOCell | MOMBI | MOMBI2 | NSGA2 | SMS-EMOA |
---|---|---|---|---|---|---|---|---|
Robot-8-88-0.1-0.1 | ||||||||
Robot-8-88-0.1-0.5 | ||||||||
Robot-8-88-0.1-1 | ||||||||
Robot-8-88-0.1-5 | ||||||||
Robot-8-88-0.1-10 | ||||||||
Robot-8-88-0.25-0.1 | ||||||||
Robot-8-88-0.25-0.5 | ||||||||
Robot-8-88-0.25-1 | ||||||||
Robot-8-88-0.25-5 | ||||||||
Robot-8-88-0.25-10 | ||||||||
Robot-8-88-0.5-0.1 | ||||||||
Robot-8-88-0.5-0.5 | ||||||||
Robot-8-88-0.5-1 | ||||||||
Robot-8-88-0.5-5 | ||||||||
Robot-8-88-0.5-10 | ||||||||
Robot-8-88-0.75-0.1 | ||||||||
Robot-8-88-0.75-0.5 | ||||||||
Robot-8-88-0.75-1 | ||||||||
Robot-8-88-0.75-5 | ||||||||
Robot-8-88-0.75-10 | ||||||||
Robot-8-88-1-0.1 | ||||||||
Robot-8-88-1-0.5 | ||||||||
Robot-8-88-1-1 | ||||||||
Robot-8-88-1-5 | ||||||||
Robot-8-88-1-10 | ||||||||
Robot-16-88-0.1-0.1 | ||||||||
Robot-16-88-0.1-0.5 | ||||||||
Robot-16-88-0.1-1 | ||||||||
Robot-16-88-0.1-5 | ||||||||
Robot-16-88-0.1-10 | ||||||||
Robot-16-88-0.25-0.1 | ||||||||
Robot-16-88-0.25-0.5 | ||||||||
Robot-16-88-0.25-1 | ||||||||
Robot-16-88-0.25-5 | ||||||||
Robot-16-88-0.5-0.1 | ||||||||
Robot-16-88-0.5-0.5 | ||||||||
Robot-16-88-0.5-1 | ||||||||
Robot-16-88-0.5-5 | ||||||||
Robot-16-88-0.5-10 | ||||||||
Robot-16-88-0.75-0.1 | ||||||||
Robot-16-88-0.75-0.5 | ||||||||
Robot-16-88-0.75-1 | ||||||||
Robot-16-88-0.75-5 | ||||||||
Robot-16-88-0.75-10 | ||||||||
Robot-16-88-1-0.1 | ||||||||
Robot-16-88-1-0.5 | ||||||||
Robot-16-88-1-1 | ||||||||
Robot-16-88-1-5 | ||||||||
Robot-16-88-1-10 | ||||||||
Robot-32-88-0.1-0.1 | ||||||||
Robot-32-88-0.1-0.5 | ||||||||
Robot-32-88-0.1-1 | ||||||||
Robot-32-88-0.1-5 | ||||||||
Robot-32-88-0.1-10 | ||||||||
Robot-32-88-0.25-0.1 | ||||||||
Robot-32-88-0.25-0.5 | ||||||||
Robot-32-88-0.25-1 | ||||||||
Robot-32-88-0.25-5 | ||||||||
Robot-32-88-0.25-10 | ||||||||
Robot-32-88-0.5-0.1 | ||||||||
Robot-32-88-0.5-0.5 | ||||||||
Robot-32-88-0.5-1 | ||||||||
Robot-32-88-0.5-5 | ||||||||
Robot-32-88-0.5-10 | ||||||||
Robot-32-88-0.75-0.1 | ||||||||
Robot-32-88-0.75-0.5 | ||||||||
Robot-32-88-0.75-1 | ||||||||
Robot-32-88-0.75-5 | ||||||||
Robot-32-88-0.75-10 | ||||||||
Robot-32-88-1-0.1 | ||||||||
Robot-32-88-1-0.5 | ||||||||
Robot-32-88-1-1 | ||||||||
Robot-32-88-1-5 | ||||||||
Robot-32-88-1-10 | ||||||||
Robot-64-88-0.1-0.1 | ||||||||
Robot-64-88-0.1-0.5 | ||||||||
Robot-64-88-0.1-1 | ||||||||
Robot-64-88-0.1-5 | ||||||||
Robot-64-88-0.1-10 | ||||||||
Robot-64-88-0.25-0.1 | ||||||||
Robot-64-88-0.25-0.5 | ||||||||
Robot-64-88-0.25-1 | ||||||||
Robot-64-88-0.25-5 | ||||||||
Robot-64-88-0.25-10 | ||||||||
Robot-64-88-0.5-0.1 | ||||||||
Robot-64-88-0.5-0.5 | ||||||||
Robot-64-88-0.5-1 | ||||||||
Robot-64-88-0.5-5 | ||||||||
Robot-64-88-0.5-10 | ||||||||
Robot-64-88-0.75-0.1 | ||||||||
Robot-64-88-0.75-0.5 | ||||||||
Robot-64-88-0.75-1 | ||||||||
Robot-64-88-0.75-5 | ||||||||
Robot-64-88-0.75-10 | ||||||||
Robot-64-88-1-0.1 | ||||||||
Robot-64-88-1-0.5 | ||||||||
Robot-64-88-1-1 | ||||||||
Robot-64-88-1-5 | ||||||||
Robot-64-88-1-10 |
Problem | AGEMOEA | AGEMOEA2 | GWASFGA | MOCell | MOMBI | MOMBI2 | NSGA2 | SMS-EMOA |
---|---|---|---|---|---|---|---|---|
Sparse-8-96-0.1-0.1 | ||||||||
Sparse-8-96-0.1-0.5 | ||||||||
Sparse-8-96-0.1-1 | ||||||||
Sparse-8-96-0.1-5 | ||||||||
Sparse-8-96-0.1-10 | ||||||||
Sparse-8-96-0.25-0.1 | ||||||||
Sparse-8-96-0.25-0.5 | ||||||||
Sparse-8-96-0.25-1 | ||||||||
Sparse-8-96-0.25-5 | ||||||||
Sparse-8-96-0.25-10 | ||||||||
Sparse-8-96-0.5-0.1 | ||||||||
Sparse-8-96-0.5-0.5 | ||||||||
Sparse-8-96-0.5-1 | ||||||||
Sparse-8-96-0.5-5 | ||||||||
Sparse-8-96-0.5-10 | ||||||||
Sparse-8-96-0.75-0.1 | ||||||||
Sparse-8-96-0.75-0.5 | ||||||||
Sparse-8-96-0.75-1 | ||||||||
Sparse-8-96-0.75-5 | ||||||||
Sparse-8-96-0.75-10 | ||||||||
Sparse-8-96-1-0.1 | ||||||||
Sparse-8-96-1-0.5 | ||||||||
Sparse-8-96-1-1 | ||||||||
Sparse-8-96-1-5 | ||||||||
Sparse-8-96-1-10 | ||||||||
Sparse-16-96-0.1-0.1 | ||||||||
Sparse-16-96-0.1-0.5 | ||||||||
Sparse-16-96-0.1-1 | ||||||||
Sparse-16-96-0.1-5 | ||||||||
Sparse-16-96-0.1-10 | ||||||||
Sparse-16-96-0.25-0.1 | ||||||||
Sparse-16-96-0.25-0.5 | ||||||||
Sparse-16-96-0.25-1 | ||||||||
Sparse-16-96-0.25-5 | ||||||||
Sparse-16-96-0.25-10 | ||||||||
Sparse-16-96-0.5-0.1 | ||||||||
Sparse-16-96-0.5-0.5 | ||||||||
Sparse-16-96-0.5-1 | ||||||||
Sparse-16-96-0.5-5 | ||||||||
Sparse-16-96-0.5-10 | ||||||||
Sparse-16-96-0.75-0.1 | ||||||||
Sparse-16-96-0.75-0.5 | ||||||||
Sparse-16-96-0.75-1 | ||||||||
Sparse-16-96-0.75-5 | ||||||||
Sparse-16-96-0.75-10 | ||||||||
Sparse-16-96-1-0.1 | ||||||||
Sparse-16-96-1-0.5 | ||||||||
Sparse-16-96-1-1 | ||||||||
Sparse-16-96-1-5 | ||||||||
Sparse-16-96-1-10 | ||||||||
Sparse-32-96-0.1-0.1 | ||||||||
Sparse-32-96-0.1-0.5 | ||||||||
Sparse-32-96-0.1-1 | ||||||||
Sparse-32-96-0.1-5 | ||||||||
Sparse-32-96-0.1-10 | ||||||||
Sparse-32-96-0.25-0.1 | ||||||||
Sparse-32-96-0.25-0.5 | ||||||||
Sparse-32-96-0.25-1 | ||||||||
Sparse-32-96-0.25-5 | ||||||||
Sparse-32-96-0.25-10 | ||||||||
Sparse-32-96-0.5-0.1 | ||||||||
Sparse-32-96-0.5-0.5 | ||||||||
Sparse-32-96-0.5-1 | ||||||||
Sparse-32-96-0.5-5 | ||||||||
Sparse-32-96-0.5-10 | ||||||||
Sparse-32-96-0.75-0.1 | ||||||||
Sparse-32-96-0.75-0.5 | ||||||||
Sparse-32-96-0.75-1 | ||||||||
Sparse-32-96-0.75-5 | ||||||||
Sparse-32-96-0.75-10 | ||||||||
Sparse-32-96-1-0.1 | ||||||||
Sparse-32-96-1-0.5 | ||||||||
Sparse-32-96-1-1 | ||||||||
Sparse-32-96-1-5 | ||||||||
Sparse-32-96-1-10 | ||||||||
Sparse-64-96-0.1-0.1 | ||||||||
Sparse-64-96-0.1-0.5 | ||||||||
Sparse-64-96-0.1-1 | ||||||||
Sparse-64-96-0.1-5 | ||||||||
Sparse-64-96-0.1-10 | ||||||||
Sparse-64-96-0.25-0.1 | ||||||||
Sparse-64-96-0.25-0.5 | ||||||||
Sparse-64-96-0.25-1 | ||||||||
Sparse-64-96-0.25-5 | ||||||||
Sparse-64-96-0.25-10 | ||||||||
Sparse-64-96-0.5-0.1 | ||||||||
Sparse-64-96-0.5-0.5 | ||||||||
Sparse-64-96-0.5-1 | ||||||||
Sparse-64-96-0.5-5 | ||||||||
Sparse-64-96-0.5-10 | ||||||||
Sparse-64-96-0.75-0.1 | ||||||||
Sparse-64-96-0.75-0.5 | ||||||||
Sparse-64-96-0.75-1 | ||||||||
Sparse-64-96-0.75-5 | ||||||||
Sparse-64-96-0.75-10 | ||||||||
Sparse-64-96-1-0.1 | ||||||||
Sparse-64-96-1-0.5 | ||||||||
Sparse-64-96-1-1 | ||||||||
Sparse-64-96-1-5 | ||||||||
Sparse-64-96-1-10 |
Problem | AGEMOEA | AGEMOEA2 | GWASFGA | MOCell | MOMBI | MOMBI2 | NSGA2 | SMS-EMOA |
---|---|---|---|---|---|---|---|---|
Fpppp-8-334-0.1-0.1 | ||||||||
Fpppp-8-334-0.1-0.5 | ||||||||
Fpppp-8-334-0.1-1 | ||||||||
Fpppp-8-334-0.1-5 | ||||||||
Fpppp-8-334-0.1-10 | ||||||||
Fpppp-8-334-0.25-0.1 | ||||||||
Fpppp-8-334-0.25-0.5 | ||||||||
Fpppp-8-334-0.25-1 | ||||||||
Fpppp-8-334-0.25-5 | ||||||||
Fpppp-8-334-0.25-10 | ||||||||
Fpppp-8-334-0.5-0.1 | ||||||||
Fpppp-8-334-0.5-0.5 | ||||||||
Fpppp-8-334-0.5-1 | ||||||||
Fpppp-8-334-0.5-5 | ||||||||
Fpppp-8-334-0.5-10 | ||||||||
Fpppp-8-334-0.75-0.1 | ||||||||
Fpppp-8-334-0.75-0.5 | ||||||||
Fpppp-8-334-0.75-1 | ||||||||
Fpppp-8-334-0.75-5 | ||||||||
Fpppp-8-334-0.75-10 | ||||||||
Fpppp-8-334-1-0.1 | ||||||||
Fpppp-8-334-1-0.5 | ||||||||
Fpppp-8-334-1-1 | ||||||||
Fpppp-8-334-1-5 | ||||||||
Fpppp-8-334-1-10 | ||||||||
Fpppp-16-334-0.1-0.1 | ||||||||
Fpppp-16-334-0.1-0.5 | ||||||||
Fpppp-16-334-0.1-1 | ||||||||
Fpppp-16-334-0.1-5 | ||||||||
Fpppp-16-334-0.1-10 | ||||||||
Fpppp-16-334-0.25-0.1 | ||||||||
Fpppp-16-334-0.25-0.5 | ||||||||
Fpppp-16-334-0.25-1 | ||||||||
Fpppp-16-334-0.25-5 | ||||||||
Fpppp-16-334-0.25-10 | ||||||||
Fpppp-16-334-0.5-0.1 | ||||||||
Fpppp-16-334-0.5-0.5 | ||||||||
Fpppp-16-334-0.5-1 | ||||||||
Fpppp-16-334-0.5-5 | ||||||||
Fpppp-16-334-0.5-10 | ||||||||
Fpppp-16-334-0.75-0.1 | ||||||||
Fpppp-16-334-0.75-0.5 | ||||||||
Fpppp-16-334-0.75-1 | ||||||||
Fpppp-16-334-0.75-5 | ||||||||
Fpppp-16-334-0.75-10 | ||||||||
Fpppp-16-334-1-0.1 | ||||||||
Fpppp-16-334-1-0.5 | ||||||||
Fpppp-16-334-1-1 | ||||||||
Fpppp-16-334-1-5 | ||||||||
Fpppp-16-334-1-10 | ||||||||
Fpppp-32-334-0.1-0.1 | ||||||||
Fpppp-32-334-0.1-0.5 | ||||||||
Fpppp-32-334-0.1-1 | ||||||||
Fpppp-32-334-0.1-5 | ||||||||
Fpppp-32-334-0.1-10 | ||||||||
Fpppp-32-334-0.25-0.1 | ||||||||
Fpppp-32-334-0.25-0.5 | ||||||||
Fpppp-32-334-0.25-1 | ||||||||
Fpppp-32-334-0.25-5 | ||||||||
Fpppp-32-334-0.25-10 | ||||||||
Fpppp-32-334-0.5-0.1 | ||||||||
Fpppp-32-334-0.5-0.5 | ||||||||
Fpppp-32-334-0.5-1 | ||||||||
Fpppp-32-334-0.5-5 | ||||||||
Fpppp-32-334-0.5-10 | ||||||||
Fpppp-32-334-0.75-0.1 | ||||||||
Fpppp-32-334-0.75-0.5 | ||||||||
Fpppp-32-334-0.75-1 | ||||||||
Fpppp-32-334-0.75-5 | ||||||||
Fpppp-32-334-0.75-10 | ||||||||
Fpppp-32-334-1-0.1 | ||||||||
Fpppp-32-334-1-0.5 | ||||||||
Fpppp-32-334-1-1 | ||||||||
Fpppp-32-334-1-5 | ||||||||
Fpppp-32-334-1-10 | ||||||||
Fpppp-64-334-0.1-0.1 | ||||||||
Fpppp-64-334-0.1-0.5 |