Next Article in Journal
Computational Insights into the Unstable Fixed Point of the Fractional Difference Logistic Map
Next Article in Special Issue
On Lusztig’s Character Formula for Chevalley Groups of Type Al
Previous Article in Journal
Multidimensional Inequality Metrics for Sustainable Business Development
Previous Article in Special Issue
Characterizations of Commutativity of Prime Ring with Involution by Generalized Derivations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Correction

Correction: Camazón Portela, D.; López Ramos, J.A. Error-Correcting Codes on Projective Bundles over Deligne–Lusztig Varieties. Mathematics 2023, 11, 3079

by
Daniel Camazón Portela
*,† and
Juan Antonio López Ramos
Department of Mathematics, University of Almería, 04120 Almería, Spain
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2024, 12(23), 3634; https://doi.org/10.3390/math12233634
Submission received: 23 February 2024 / Accepted: 10 September 2024 / Published: 21 November 2024
In the published publication [1], there was update regarding Daniel Camazón Portela’ affiliation, the correct one should be: Department of Mathematics, University of Almería, 04120 Almería, Spain; danielcp@ual.es.
The authors wish to make corrections on the result exposed in [1] concerning the dimension of the obtained codes. Let us recall the Corollaries:
Corollary 2.
Let S 1 be the Deligne–Lusztig surface of type A 2 defined over the field F q . Consider some b, such that 0 < b < ( q + 1 ) , and V i = O S 1 ( n i H j = 1 q 2 + q + 1 m i , j B j ) for i = 1 , 2 , where H = π * ( O P 2 ( 1 ) ) , verifying, for any pair, i 1 , i 2 N with i 1 + i 2 = b :
1. 
( i 1 n 1 + i 2 n 2 ) 3 ( q 1 ) ;
2. 
( i 1 n 1 + i 2 n 2 ) j = 1 3 ( i 1 m 1 , j + i 2 m 2 , j ) ;
3. 
( i 1 m 1 , j + i 2 m 2 , j ) ( i 1 m 1 , j + 1 + i 2 m 2 , j + 1 ) ;
4. 
3 ( i 1 n 1 + i 2 n 2 ) > j = 1 q 2 + q + 1 ( i 1 m 1 , j + 1 + i 2 m 2 , j + 1 ) .
Let T 1 be the projective bundle P ( V 1 V 2 ) over S 1 , p 1 : T 1 S 1 . Then, we can construct a code on T 1 over F q with parameters
1. 
n = ( q 2 + q + 1 ) ( q + 1 ) 2 ;
2. 
k = i 1 , i 2 N 2 i 1 + i 2 = b 1 2 ( ( i 1 n 1 + i 2 n 2 ) ( ( i 1 n 1 + i 2 n 2 ) + 3 ) j = 1 q 2 + q + 1 ( i 1 m 1 , j + i 2 m 2 , j ) ( ( i 1 m 1 , j + i 2 m 2 , j ) + 1 ) ) + 1 ;
3. 
d n ( q 2 + q + 1 ) ( q + 1 ) b .
Corollary 3.
Let S 2 be the Deligne–Lusztig surface of type A 4 2 defined over the field F q 2 . Consider V i = π * i * O P 4 ( t i ) for i = 1 , 2 , and let T 2 be the projective bundle P ( V 1 V 2 ) over S 2 , p 2 : T 2 S 2 . Then, for some 0 < b < ( q 2 + 1 ) and for any t 1 , t 2 N such that ( q + 1 ) < ( i 1 t 1 + i 2 t 2 ) < ( q 3 + 1 ) for any pair i 1 , i 2 N with i 1 + i 2 = b , we can construct a code on T 2 over F q 2 with parameters
1. 
n = ( q 5 + 1 ) ( q 3 + 1 ) ( q 2 + 1 ) 2 ;
2. 
k = i 1 , i 2 N 2 i 1 + i 2 = b 4 + i 1 t 1 + i 2 t 2 i 1 t 1 + i 2 t 2 4 + i 1 t 1 + i 2 t 2 ( q + 1 ) i 1 t 1 + i 2 t 2 ( q + 1 ) ;
3. 
d n ( q 5 + 1 ) ( q 3 + 1 ) ( q 2 + 1 ) b .
Instead of considering general vector bundles of rank 2 of the form V = V 1 V 2 , we should work with normalized vector bundles, that is, vector bundles V ˜ , verifying H 0 ( S i , V ˜ ) 0 , but H 0 ( S i , V ˜ N ) = 0 for i = 1 , 2 and for any line bundle N with d e g ( N ) < 0 . We insert Corollarys 4 and 5 before Example 2.
Corollary 4.
Let S 1 be the Deligne–Lusztig surface of type A 2 defined over the field F q . Let us consider V ˜ = O S 1 O S 1 ( n 1 H j = 1 q 2 + q + 1 m 1 , j B j ) , with m 1 , j 0 for j = 1 , . . . , q 2 + q + 1 and H 0 ( S 1 , O S 1 ( n 1 H j = 1 q 2 + q + 1 m 1 , j B j ) = 0 , and let T 1 be the projective bundle P ( V ˜ ) over S 1 , p 1 : T 1 S 1 . Now, let L be the line bundle over T 1 L = O T 1 ( b 1 ) p 1 * O S 1 ( D 1 ) , where D 1 = n 2 H j = 1 q 2 + q + 1 m 2 , j B j , with n 2 3 ( q 1 ) , m 2 , j 0 and m 1 , j m 2 , j 0 for j = 1 , . . . , q 2 + q + 1 . Then, we can construct a code on T 1 over F q with parameters
1. 
n = ( q 2 + q + 1 ) ( q + 1 ) 2 ,
2. 
k = h 0 ( S 1 , O S 1 ( n 2 H j = 1 q 2 + q + 1 m 2 , j B j ) ) + t = 1 b 1 h 0 ( S 1 , O S 1 ( ( n 1 t + n 2 ) H j = 1 q 2 + q + 1 m 1 , j t + m 2 , j ) B j ) ) ,
3. 
d ( q 2 + q + 1 ) ( q + 1 ) 2 ( q 2 + q + 1 ) ( q + 1 ) b 1 j = 1 q 2 + q + 1 ( b 1 m 1 , j + m 2 , j ) ( q + 1 ) .
Proof. 
Let T 1 , B j = P ( O B j O B j ( m 1 , j ) ) . Then, there exists an isomorphism ϕ : T 1 , B j ˜ = P ( O B j O B j ( m 1 , j ) ) P ( O B j O B j ( m 1 , j ) ) . Now, let us consider the restriction L | T 1 , B j = O T 1 , B j ( b 1 ) p 1 | T 1 , B j * O B j ( m 2 , j ) . We know that ϕ * ( L | T 1 , B j ) = O T 1 , B j ˜ ( b 1 ) π * O B j ( b 1 m 1 , j + m 2 , j ) . Moreover, let us consider the divisor H 1 = ς + m 1 , j f A 1 ( T 1 , B j ˜ ) that is nef by ([20], Chap. V.2). Then, by ([15], Corollary 3.2.), we know that
l T 1 , B j H 1 · L | T 1 , B j m i n H 1 · f = b 1 m 1 , j + m 2 , j ,
so, as a consequence of ([15], Proposition 3.2), it follows that
d ( q 2 + q + 1 ) ( q + 1 ) 2 ( q 2 + q + 1 ) ( q + 1 ) b 1 j = 1 q 2 + q + 1 ( b 1 m 1 , j + m 2 , j ) ( q + 1 ) .
Corollary 5.
Let S 2 be the Deligne–Lusztig surface of type A 4 2 defined over the field F q 2 . Let us consider V ˜ = O S 2 O S 2 ( n 1 H Z ) , where O S 2 ( n H Z ) = ρ * i * O P 4 ( n ) , and let T 2 be the projective bundle P ( V ˜ ) over S 2 , p 2 : T 2 S 2 . Now, let L be the line bundle over T 2 L = O T 2 ( b 2 ) p 2 * O S 2 ( D 2 ) , with D 2 = n 2 H Z . Then, we can construct a code on T 2 over F q 2 with parameters
1. 
n = ( q 5 + 1 ) ( q 3 + 1 ) ( q 2 + 1 ) 2 ,
2. 
k = h 0 ( S 2 , O S 2 ( n 2 H Z ) ) + t = 1 b 2 h 0 ( S 2 , O S 2 ( ( n 2 n 1 t ) H Z ) ) ,
3. 
d ( q 5 + 1 ) ( q 3 + 1 ) ( q 2 + 1 ) 2 ( q 5 + 1 ) ( q 3 + 1 ) ( q 2 + 1 ) b 2 ( q 5 + 1 ) ( q 3 + 1 ) ( 2 b 2 n 1 + n 2 ) ( q 2 + 1 ) .
Proof. 
Let T 2 , B j = P ( O B j O B j ( n 1 ) ) . Now, let us consider the restriction L | T 2 , B j = O T 2 , B j ( b 2 ) p 2 | T 2 , B j * O B j ( n 2 ) . Moreover, let us consider the divisor H 2 = ς + n 1 f A 1 ( T 2 , B j ) that is nef by ([20], Chap. V.2). Then by ([15], Corollary 3.2.) we know that
l T 2 , B j H 2 · L | T 2 , B j m i n H 2 · f = 2 b 2 n 1 + n 2 ,
so, as a consequence of ([15], Proposition 3.2), it follows that
d ( q 5 + 1 ) ( q 3 + 1 ) ( q 2 + 1 ) 2 ( q 5 + 1 ) ( q 3 + 1 ) ( q 2 + 1 ) b 2 ( q 5 + 1 ) ( q 3 + 1 ) ( 2 b 2 n 1 + n 2 ) ( q 2 + 1 ) .
In [1] (Examples 2 and 3), we compute the parameters of some of the codes in Corollary 2 and Corollary 3 for the binary case, q = 2 . However, the dimensions are not the correct ones, so we instead propose the following new examples of some of the codes in Corollary 4 and Corollary 5. We insert Example 4 after Example 3.
Example 2.
Let us consider the particular case q = 2 , with b 1 = 1 , n 1 = 1 , n 2 = 3 , m 1 , j = 1 for j = 1 , . . . , 7 , m 2 , j = 1 for j = 1 , 2 , 3 and m 2 , j = 0 otherwise, for the family of codes presented in Corollary 4. Then, we obtain codes with the following parameters:
1. 
n = 63 ,
2. 
k = 7 ,
3. 
d 12 .
Example 3.
For q = 2 , let us consider the particular case b 2 = 1 , n 1 = 1 , n 2 = 1 for the family of codes presented in Corollary 5. Then, we obtain a code with the following parameters:
1. 
n = 7425 ,
2. 
k = 6 ,
3. 
d 1485 .
Example 4.
Let us consider the particular case q = 3 , with b 1 = 1 , n 1 = 1 , n 2 = 7 , m 1 , j = 1 for j = 1 , . . . , 13 , m 2 , j = 1 for j = 1 , 2 , 3 and m 2 , j = 0 otherwise, for the family of codes presented in Corollary 4. Then, we obtain codes with the following parameters:
1. 
n = 208 ,
2. 
k = 33 ,
3. 
d 92 .
Note that whereas the performance of the family of codes presented in Corollary 4 is good in terms of the information rate k / n and the minimum distance d, this is not the case for the family constructed in Corollary 5, where some modifications should be introduced in order to improve its information rate.
The authors state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated.

Reference

  1. Camazón Portela, D.; López Ramos, J.A. Error-Correcting Codes on Projective Bundles over Deligne-Lusztig Varieties. Mathematics 2023, 11, 3079. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Camazón Portela, D.; López Ramos, J.A. Correction: Camazón Portela, D.; López Ramos, J.A. Error-Correcting Codes on Projective Bundles over Deligne–Lusztig Varieties. Mathematics 2023, 11, 3079. Mathematics 2024, 12, 3634. https://doi.org/10.3390/math12233634

AMA Style

Camazón Portela D, López Ramos JA. Correction: Camazón Portela, D.; López Ramos, J.A. Error-Correcting Codes on Projective Bundles over Deligne–Lusztig Varieties. Mathematics 2023, 11, 3079. Mathematics. 2024; 12(23):3634. https://doi.org/10.3390/math12233634

Chicago/Turabian Style

Camazón Portela, Daniel, and Juan Antonio López Ramos. 2024. "Correction: Camazón Portela, D.; López Ramos, J.A. Error-Correcting Codes on Projective Bundles over Deligne–Lusztig Varieties. Mathematics 2023, 11, 3079" Mathematics 12, no. 23: 3634. https://doi.org/10.3390/math12233634

APA Style

Camazón Portela, D., & López Ramos, J. A. (2024). Correction: Camazón Portela, D.; López Ramos, J.A. Error-Correcting Codes on Projective Bundles over Deligne–Lusztig Varieties. Mathematics 2023, 11, 3079. Mathematics, 12(23), 3634. https://doi.org/10.3390/math12233634

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop