Topological Interactions Between Homotopy and Dehn Twist Varieties
Abstract
1. Introduction
1.1. General Dehn Twist
1.2. Motivation
1.3. Contributions
2. Preliminaries
2.1. Curves and Dehn Twists
2.2. Dehn Twists, Isotopy and Fibration
3. Homotopy Under Dehn Twists: Definitions
4. Topological Properties
4.1. Extended Dehn Twist in Non-Contractible Space
4.2. Homotopic Retraction Under Extended Dehn Twist
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, A.P.O.; Teo, J.C.Y.; Ryu, S. Topological phases on non-orientable surfaces: Twisting by parity Symmetry. New J. Phys. 2016, 18, 035005. [Google Scholar] [CrossRef]
- Zhu, G.; Lavasani, A.; Barkeshli, M. Instantaneous braids and Dehn twists in topologically ordered states. Phys. Rev. B. 2020, 102, 075105. [Google Scholar] [CrossRef]
- Heusler, S.; Schlummer, P.; Ubben, M.S. The topological origin of quantum randomness. Symmetry 2021, 13, 581. [Google Scholar] [CrossRef]
- Ludkowski, S.V. Topologies on smashed twisted wreath products of metagroups. Axioms 2023, 12, 240. [Google Scholar] [CrossRef]
- Donovan, P.; Karoubi, M. Graded Brauer groups and K-theory with local coefficients. Inst. Hautes Études Sci. Publ. Math. 1970, 38, 5–25. [Google Scholar] [CrossRef]
- Hebestreit, F.; Sagave, S. Homotopical and operator algebraic twisted K-theory. Math. Ann. 2020, 378, 1021–1059. [Google Scholar] [CrossRef]
- Farb, B.; Margalit, D. A Primer on Mapping Class Groups (PMS-49); Princeton University Press: Princeton, NJ, USA, 2012; Chapter 3; pp. 64–88. [Google Scholar] [CrossRef]
- Yusuke, K.; Massuyeau, G.; Tsuji, S. Generalized Dehn Twists in Low-Dimensional Topology; Topology & Geometry; EMS Press: Berlin, Germany, 2019; pp. 357–398. [Google Scholar] [CrossRef]
- Słota, D.; Hetmaniok, E.; Wituła, R.; Gromysz, K.; Trawiński, T. Homotopy Approach for Integrodifferential Equations. Mathematics 2019, 7, 904. [Google Scholar] [CrossRef]
- Hartmann, E. Coarse Sheaf Cohomology. Mathematics 2023, 11, 3121. [Google Scholar] [CrossRef]
- Koropecki, A.; Tal, F.A. Area-preserving irrotational diffeomorphisms of the torus with sublinear diffusions. Proc. Am. Math. Soc. 2014, 142, 3483–3490. [Google Scholar] [CrossRef]
- Addas-Zanata, S.; Tal, F.A.; Garcia, B.A. Dynamics of homeomorphisms of the torus homotopic to Dehn twists. Ergod. Theory Dyn. Syst. 2014, 34, 409–422. [Google Scholar] [CrossRef]
- Doeff, H.E. Rotation measures for homeomorphisms of the torus homotopic to a Dehn twist. Ergod. Theory Dyn. Syst. 1997, 17, 575–591. [Google Scholar] [CrossRef]
- Kuno, Y.; Massuyeau, G. Generalized Dehn twists on surfaces and homology cylinders. Algebr. Geom. Topol. 2021, 21, 697–754. [Google Scholar] [CrossRef]
- Korkmaz, M. Stable commutator length of a Dehn twist. Mich. Math. J. 2004, 52, 23–31. [Google Scholar] [CrossRef]
- Szepietowski, B. On the commutator length of a Dehn twist. C. R. Math. 2010, 348, 923–926. [Google Scholar] [CrossRef]
- MCCullough, D. Homeomorphisms which are Dehn twists on the boundary. Algebr. Geom. Topol. 2006, 6, 1331–1340. [Google Scholar] [CrossRef]
- Stukow, M. Dehn twists on nonorientable surfaces. Fundam. Math. 2006, 189, 117–147. [Google Scholar] [CrossRef]
- Keating, A.M. Dehn twists and free subgroups of symplectic mapping class groups. J. Topol. 2014, 7, 436–474. [Google Scholar] [CrossRef]
- Ishida, A. The structure of subgroup of mapping class groups generated by two Dehn twists. Proc. Jpn. Acad. Ser. A Math. Sci. 1996, 72, 240–241. [Google Scholar] [CrossRef]
- Marden, A.; Masur, H. A foliation of Teichmüller space by twist invariant disks. Math. Scand. 1975, 36, 211–228. [Google Scholar] [CrossRef]
- Hedden, M.; Mark, T.E. Floer homology and fractional Dehn twist. Adv. Math. 2018, 324, 1–39. [Google Scholar] [CrossRef]
- Baykur, R.I.; Kamada, S. Classification of broken Lefschetz fibrations with small fiber genera. Math. Soc. Jpn. 2015, 67, 877–901. [Google Scholar] [CrossRef]
- Lin, J. Isotopy of the Dehn twist on K3#K3 after a single stabilization. Geom. Topol. 2023, 27, 1987–2012. [Google Scholar]
- Kronheimer, P.B.; Mrowka, T.S. The Dehn twist on a sum of two K3 surfaces. Math. Res. Lett. 2020, 27, 1767–1783. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagchi, S. Topological Interactions Between Homotopy and Dehn Twist Varieties. Mathematics 2024, 12, 3282. https://doi.org/10.3390/math12203282
Bagchi S. Topological Interactions Between Homotopy and Dehn Twist Varieties. Mathematics. 2024; 12(20):3282. https://doi.org/10.3390/math12203282
Chicago/Turabian StyleBagchi, Susmit. 2024. "Topological Interactions Between Homotopy and Dehn Twist Varieties" Mathematics 12, no. 20: 3282. https://doi.org/10.3390/math12203282
APA StyleBagchi, S. (2024). Topological Interactions Between Homotopy and Dehn Twist Varieties. Mathematics, 12(20), 3282. https://doi.org/10.3390/math12203282