The Shrinking Target Problem for Nonautonomous Dynamical Systems Corresponding to Cantor Series Expansion over Formal Laurent Series
Abstract
:1. Introduction
- moreover, if and only if
- For
- For , if thus,
2. Main Results
3. Upper Bounds of Dimension
4. Lower Bounds of Dimension
- (1)
- If then
- (2)
- If then
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Artin, E. Quadratische Körper im Gebiete der höheren Kongruenzen. Math. Z. 1924, 19, 153–206. [Google Scholar] [CrossRef]
- Cantor, G. Über die einfachen Zahlensysteme. Z. Math. Phys. 1869, 14, 121–128. [Google Scholar]
- Erdős, P.; Rényi, A. On Cantor’s series with convergent ∑1/qn. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 1959, 2, 93–109. [Google Scholar]
- Erdős, P.; Rényi, A. Some further statistical properties of the digits in Cantor’s series. Acta Math. Acad. Sci. Hungar. 1959, 10, 21–29. [Google Scholar] [CrossRef]
- Galambos, J. Uniformly distributed sequences mod 1 and Cantor’s series representation. Czech. Math. J. 1976, 26, 636–641. [Google Scholar] [CrossRef]
- Han, Y.; Ma, C.; Taylor, T. Uniform Diophantine Approximation to Cantor Series Expansion. Fractals Interdiscip. J. Complex Geom. Nat. 2021, 29, 1. [Google Scholar] [CrossRef]
- Rényi, A. On a new axiomatic theory of probability. Acta Math. Acad. Sci. Hungar. 1955, 6, 329–332. [Google Scholar] [CrossRef]
- Rényi, A. On the distribution of the digits in Cantor’s series. Mat. Lapok 1956, 7, 77–100. [Google Scholar]
- Rényi, A. Probabilistic methods in number theory. Shuxue Jinzhan 1958, 4, 465–510. [Google Scholar]
- Šalát, T. Eine metrische Eigenschaft der Cantorschen Entwicklungen der reelen Zahlen und Irrationalitätskriterien. Czechoslovak Math. J. 1964, 14, 254–266. [Google Scholar] [CrossRef]
- Schweiger, F. Über den Satz von Borel–Rényi in der Theorie der Cantorschen Reihen. Monatshefte Math. 1969, 74, 150–153. [Google Scholar] [CrossRef]
- Mance, B. Number theoretic applications of a class of Cantor series fractal functions. I. Acta Math. Hungar. 2014, 144, 449–493. [Google Scholar] [CrossRef]
- Tur’an, P. On the distribution of “digits” in Cantor-systems (Hungarian, with Russian and English summaries). Mat. Lapok 1956, 7, 71–76. [Google Scholar]
- Besicovitch, A. Sets of fractional dimension (IV), on rational approximation to real numbers. J. Lond. Math. Soc. 1934, 9, 126–131. [Google Scholar] [CrossRef]
- Jarník, V. Diophantische Approximationen und Hausdorffsches Maß. Rec. Math. Moscou 1929, 36, 371–382. [Google Scholar]
- Fuchs, M. On metric Diophantine approximation in the field of formal Laurent series. Finite Fields Appl. 2002, 8, 343–368. [Google Scholar] [CrossRef]
- Hu, H.; Hussain, M.; Yu, Y. Metrical properties for continued fractions of formal Laurent series. Finite Fields Appl. 2021, 73, 101850. [Google Scholar] [CrossRef]
- Fan, Q.; Wang, S.-L.; Zhang, L. Recurrence in β-expansion over formal Laurent series. Monatshefte Math. 2012, 166, 379–394. [Google Scholar] [CrossRef]
- Li, B.; Liao, L.-M.; Sanju, V.; Evgeniy, Z. The shrinking target problem for matrix transformations of Tori: Revisiting the standard problem. Adv. Math. 2023, 421, 108994. [Google Scholar] [CrossRef]
- Li, B.; Wang, B.W.; Wu, J.; Xu, J. The shrinking target problem in the dynamical system of continued fractions. J. Proc. Lond. Math. Soc. 2014, 108, 159–186. [Google Scholar] [CrossRef]
- Koivusalo, H.; Liao, L.; Rams, M. Path-dependent shrinking targets in generic affine iterated function systems. arXiv 2022, arXiv:2210.05362. [Google Scholar] [CrossRef]
- Wang, W.; Li, L.; Wang, X.; Yue, Q. Doubly metric theory and simultaneous shrinking target problem in Cantor series expansion. J. Int. J. Number Theory 2022, 18, 1807–1821. [Google Scholar] [CrossRef]
- Sanadhya, S. A shrinking target theorem for ergodic transformations of the unit interval. J. Discret. Contin. Dyn. Syst. 2022, 42, 4003–4011. [Google Scholar] [CrossRef]
- Ma, C.; Wang, S.-L. Dynamical Diophantine approximation of beta expansions of formal Laurent series. Finite Fields Appl. 2015, 34, 176–191. [Google Scholar] [CrossRef]
- Fishman, L.; Mance, B.; Simmons, D.; Urbański, M. Shrinking targets for nonautonomous dynamical systems corresponding to Cantor series expansions. Bull. Aust. Math. Soc. 2015, 92, 205–213. [Google Scholar] [CrossRef]
- Sun, Y.; Cao, C.-Y. Dichotomy law for shrinking target problems in a nonautonomous dynamical system: Cantor series expansion. Proc. Am. Math. Soc. 2017, 145, 2349–2359. [Google Scholar] [CrossRef]
- Li, B.; Wu, J.; Xu, J. Metric properties and exceptional sets of β-expansions over formal Laurent series. J. Monatshefte Math. 2008, 155, 145–160. [Google Scholar] [CrossRef]
- Falconer, K.J. Fractal Geometry: Mathematical Foundations and Applications; Wiley: New York, NY, USA, 1990. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Ma, C. The Shrinking Target Problem for Nonautonomous Dynamical Systems Corresponding to Cantor Series Expansion over Formal Laurent Series. Mathematics 2024, 12, 3166. https://doi.org/10.3390/math12203166
Li X, Ma C. The Shrinking Target Problem for Nonautonomous Dynamical Systems Corresponding to Cantor Series Expansion over Formal Laurent Series. Mathematics. 2024; 12(20):3166. https://doi.org/10.3390/math12203166
Chicago/Turabian StyleLi, Xue, and Chao Ma. 2024. "The Shrinking Target Problem for Nonautonomous Dynamical Systems Corresponding to Cantor Series Expansion over Formal Laurent Series" Mathematics 12, no. 20: 3166. https://doi.org/10.3390/math12203166
APA StyleLi, X., & Ma, C. (2024). The Shrinking Target Problem for Nonautonomous Dynamical Systems Corresponding to Cantor Series Expansion over Formal Laurent Series. Mathematics, 12(20), 3166. https://doi.org/10.3390/math12203166