New Coupled Optical Solitons to Birefringent Fibers for Complex Ginzburg–Landau Equations with Hamiltonian Perturbations and Kerr Law Nonlinearity
Abstract
:1. Introduction
2. Governing Model
3. Mathematical Analysis
4. Method for Searching for Propagation of W-Shaped-like Solitons Combined with Other Families of Solitons
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hietarinta, J.; Joshi, N.; Nijhoff, F.W. Discrete and integrability. In Cambridge Texts in Applied Mathematics; Cambridge University Press: Cambridge, UK, 2016; Volume 54. [Google Scholar]
- Hirota, R. Nonlinear partial difference equations. i. A difference analogue of the Korteweg-de Vries equation. J. Phys. Soc. Jpn. 1977, 43, 1424–1433. [Google Scholar] [CrossRef]
- Nijhoff, F.W.; Quispel, G.R.W.; Capel, H.W. Direct linearization of nonlinear difference-difference equations. Phys. Lett. A 1983, 97, 125–128. [Google Scholar] [CrossRef]
- Inc, M.; Rezazadeh, H.; Vahidi, J.; Eslami, M.; Akinlar, M.A.; Ali, M.N.; Chu, Y.M. New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity. Aims Math. 2020, 5, 6972–6984. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Younis, M.; Eslami, M.; Bilal, M.; Younas, U. New exact traveling wave solutions to the (2 + 1)-dimensional chiral nonlinear Schrödinger equation. Math. Model Nat. Phenom. 2021, 16, 38. [Google Scholar] [CrossRef]
- Ghanbari, B.; Günerhan, H.; Srivastava, H. An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator–prey model. Chaos Solitons Fractals 2020, 138, 109910. [Google Scholar] [CrossRef]
- Ghanbari, B.; Inc, M. A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrödinger equation. Eur. Phys. J. Plus. 2018, 133, 142. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Chu, Y.-M. Monotonicity and convexity involving general- ized elliptic integral of the first kind. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. Matemáticas RACSAM 2021, 115, 46. [Google Scholar]
- Roshani, M.; Phan, G.; Faraj, R.H.; Phan, N.-H.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Nazemi, E.; Hanus, R.; Zych, M.; et al. Proposing a gamma radiation based intelligent system for simultane- ous analyzing and detecting type and amount of petroleum by-products. Nucl. Eng. Technol. 2021, 53, 1277–1283. [Google Scholar] [CrossRef]
- Wang, B.H.; Lu, P.H.; Dai, C.Q.; Chen, Y.X. Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation. Results Phys. 2020, 17, 103036. [Google Scholar] [CrossRef]
- Gardner, C.S.; Green, J.M.; Kruskal, M.D.; Miura, R.M. Method for solving the ko- rteweg-de vries equation. Phys. Rev. Lett. 1967, 19, 1095–1097. [Google Scholar] [CrossRef]
- Dodd, R.K.; Eilbeck, J.C.; Gibbon, J.D.; Morris, H.C. Solitons and Nonlinear Wave Equations; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Djoko, M.; Tabi, C.B.; Kofane, T.C. Effects of the septic nonlinearity and the initial value of the radius of orbital angular momentum beams on data transmission in optical fibers using the cubic-quintic-septic complex Ginzburg-Landau equation in presence of higher-order dispersions. Chaos Solitons Fractals 2021, 147, 110957. [Google Scholar] [CrossRef]
- Stegeman, G.I.; Segev, M. Optical spatial solitons and their interactions: Universality and diversity. Science 1999, 286, 1518–1523. [Google Scholar] [CrossRef]
- Desaix, M.; Helczynski, L.; Anderson, D.; Lisak, M. Propagation properties of chirped soliton pulses in optical nonlinear Kerr media. Phys. Rev. E 2002, 65, 056602. [Google Scholar] [CrossRef] [PubMed]
- Kruglov, V.I.; Peacock, A.C.; Harvey, J.D. Exact self-similar solutions of the general- ized nonlinear Schrödinger equation with distributed coefficients. Phys. Rev. Lett. 2003, 90, 113902. [Google Scholar] [CrossRef] [PubMed]
- Abbagari, S.; Houwe, A.; Doka, S.Y.; Inc, M.; Bouetou, T.B. Specific optical solitons solutions to the coupled Radhakrishnan–Kundu–Lakshmanan model and modulation instability gain spectra in birefringent fibers. Opt. Quantum Electron. 2022, 35, 1–25. [Google Scholar] [CrossRef]
- Porsezian, K.; Kalithasan, B. Cnoidal and solitary wave solutions of the coupled higher order nonlinear Schrödinger equation in nonlinear optics. Chaos Solitons Fractals 2007, 31, 188–196. [Google Scholar] [CrossRef]
- Kaminow, I. Polarization in optical fibers. IEEE J. Quantum Electron. 1981, 17, 15–22. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Alngar, M.E.M.; El-Horbaty, M.M.; Biswas, A.; Kara, A.H.; Ekici, M.; Asma, M.; Alzahran, A.K.; Belic, M.R. Solitons and conservation laws in magneto-optic waveguides having parabolic-nonlocal law of refractive index. Phys. Lett. A 2020, 384, 126814. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Alngar, M.E.M.; Shohib, R.M.A.; Biswas, A.; Yildirim, Y.; Dakova, A.; Alshomrani, A.S.; Alshehri, H.M.; Belic, M.R. Cubic-quartic solitons in couplers with optical metamaterials having polynomial law of nonlinearity. Optik 2021, 248, 168087. [Google Scholar] [CrossRef]
- Triki, H.; Zhou, Q.; Liu, W.; Biswas, A.; Moraru, L.; Yildirim, Y.; Alshehri, H.M.; Belic, M.R. Chirped optical soliton propagation in birefringent fibers modeled by coupled Fokas-Lenells system. Chaos Solitons Fractals 2022, 155, 111751. [Google Scholar] [CrossRef]
- Abbagari, S.; Saliou, Y.; Houwe, A.; Akinyemi, L.; Inc, M.; Bouetou, T.B. Modulated wave and modulation instability gain brought by the cross-phase modulation in birefringent fibers having anti-cubic nonlinearity. Optik 2022, 242, 128191. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Alngar, M.E.M.; Shohib, R.M.A.; Biswas, A.; Triki, H.; Yildirim, Y.; Alshomrani, A.S.; Alshehri, H.M. Cubic-quartic optical solitons in birefringent fibers with Sasa-Satsuma equation. Nucl. Eng. Technol. 2021, 53, 1277–1283. [Google Scholar] [CrossRef]
- Rehman, H.U.; Ullah, N.; Imran, N.M.A.; Akgul, A. Optical Solitons of Two Non-linear Models in Birefringent Fibres Using Extended Direct Algebraic Method. Int. J. Appl. Comput. Math. 2021, 7, 227. [Google Scholar] [CrossRef]
- Khalifa, A.S.; Badra, N.M.; Ahmed, H.M.; Rabie, W.B. Retrieval of optical solitons in fiber Bragg gratings for high-order coupled system with arbitrary refractive index. Optik 2023, 287, 171116. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Gepreel, K.A.; El-Horbaty, M. Highly dispersive optical solitons in fiber Bragg gratings with stochastic perturbed Fokas-Lenells model having spatio-temporal dispersion and multiplicative white noise. Optik 2023, 286, 170975. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Shohib, R.M.A.; Alngar, M.E.M. Dispersive optical solitons in birefringent fibers for (2+1)-dimensional NLSE with Kerr law nonlinearity and spatio-temporal dispersion having multiplicative white noise via Itô calculus. Optik 2022, 267, 69667. [Google Scholar] [CrossRef]
- Zhang, J. Optical solitons of Sasa-Satsuma equation in birefringent fibers. Optik 2022, 270, 170070. [Google Scholar] [CrossRef]
- Yomba E, Method of searching coupled optical solitons to magneto- optic waveguides having parabolic-nonlocal law of refractive index. Phys. Scr. 2024, 99, 045238. [CrossRef]
- Yomba, E. Method of searching for a W-shaped like soliton combined with other families of solitons in coupled equations: Application to magneto-optic waveguides with quadratic-cubic nonlinearity. Opt. Quant. Electron. 2024, 56, 752. [Google Scholar] [CrossRef]
- Samir, I.; Badra, N.; Ahmed, H.M.; Arnous, A.H. Solitons in birefringent fibers for CGL equation with Hamiltonian perturbations and Kerr law nonlinearity using modified extended direct algebraic method. Commun. Nonlinear Sci. Numer. Simulat. 2021, 102, 105945. [Google Scholar] [CrossRef]
- He, J.H.; Wu, X.H. Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 2006, 30, 700–708. [Google Scholar] [CrossRef]
- Ma, W.X. Four-component combined integrable equations possessing bi-Hamiltonian formulations. Mod. Phys. Lett. B 2024, 38, 2450319. [Google Scholar] [CrossRef]
- Ma, W.X. A combined Liouville integrable hierarchy associated with a fourth-order matrix spectral problem. Commun. Theor. Phys. 2024, 76, 075001. [Google Scholar] [CrossRef]
- Benoudina, N.; Zhang, W.Y.; Zhang, Y.; Wazwaz, A.M. New study of (3 + 1)-dimensional nonlinear evolution equation with main part mKdV equation and novel solitary wave solutions. Int. J. Mod. Phys. B 2024, 38, 22. [Google Scholar] [CrossRef]
- Ma, W.X. Integrable Couplings and Two-Dimensional Unital Algebras. Axioms 2024, 13, 481. [Google Scholar] [CrossRef]
- Yomba, E. sn-cn, sn-dn, cn-dn Jacobi elliptic functions and solitons solutions in birefringent fibers for CGL equations with Hamiltonian perturbations and Kerr law nonlinearity. Optik 2022, 271, 170136. [Google Scholar] [CrossRef]
- Kruglov, V.I.; Harvey, J.D. Solitary waves in optical fibers governed by higher-order dispersion. Phys. Rev. A 2018, 98, 063811. [Google Scholar] [CrossRef]
Figure Number | Maximum Error | Figure Number | Maximum Error |
---|---|---|---|
Figure 1a–c | Figure 1d–f | ||
Figure 1g–i | Figure 1j–l | ||
Figure 1m–o | Figure 2a–c | ||
Figure 2d–f | Figure 2g–i | ||
Figure 2j–l | Figure 3a–c | ||
Figure 3d–f | Figure 3g–i | ||
Figure 4a–c | Figure 4d–f | ||
Figure 5a–c | Figure 5d–f | ||
Figure 6a–c | Figure 6d–f | ||
Figure 7a–c | Figure 7d–f | ||
Figure 7g–i | Figure 8a–c | ||
Figure 8d–f | Figure 8g–i | ||
Figure 9a–c | Figure 9d–f | ||
Figure 9>g–i | Figure 9j–l | ||
Figure 10a–c | Figure 10d–f | ||
Figure 10g–i | Figure 10j–l |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yomba, E.; Ramchandra Nair, P. New Coupled Optical Solitons to Birefringent Fibers for Complex Ginzburg–Landau Equations with Hamiltonian Perturbations and Kerr Law Nonlinearity. Mathematics 2024, 12, 3073. https://doi.org/10.3390/math12193073
Yomba E, Ramchandra Nair P. New Coupled Optical Solitons to Birefringent Fibers for Complex Ginzburg–Landau Equations with Hamiltonian Perturbations and Kerr Law Nonlinearity. Mathematics. 2024; 12(19):3073. https://doi.org/10.3390/math12193073
Chicago/Turabian StyleYomba, Emmanuel, and Poonam Ramchandra Nair. 2024. "New Coupled Optical Solitons to Birefringent Fibers for Complex Ginzburg–Landau Equations with Hamiltonian Perturbations and Kerr Law Nonlinearity" Mathematics 12, no. 19: 3073. https://doi.org/10.3390/math12193073
APA StyleYomba, E., & Ramchandra Nair, P. (2024). New Coupled Optical Solitons to Birefringent Fibers for Complex Ginzburg–Landau Equations with Hamiltonian Perturbations and Kerr Law Nonlinearity. Mathematics, 12(19), 3073. https://doi.org/10.3390/math12193073