Solutions of the Mathieu–Hill Equation for a Trapped-Ion Harmonic Oscillator—A Qualitative Discussion
Abstract
:1. Introduction
2. Solutions of the Mathieu–Hill Equation
- One chooses a solution expressed as , where is the complex conjugate of so that
- As demonstrated in [77] one chooses a solution of the form . Therefore,By using Equations (23) and (24) one obtainsFurther on we introduceThen, where C is the column matrix introduced above. One further infersAs explained above, one also supposes that and . ThenWe consider the initial conditionsUnder these circumstances Equation (36) is recast asThen, one uses Equation (38) and the residual interaction function is
Discussion
3. Stability Diagram of the MH Equation
4. Results
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
Abbreviations
2D | Two-Dimensional |
3D | Three-Dimensional |
BSM | Beyond the Standard Model |
DIT | Digital Ion Trap |
EIT | Electrodynamic Ion Trap |
ESI-MS | Electrospray Mass Spectrometry |
HO | Harmonic Oscillator |
IT | Ion Trap |
KZ | Kibble-Zurek |
LIT | Linear Ion Trap |
LPT | Linear Paul Trap |
MD | Molecular Dynamics |
MS | Mass Spectrometry |
PO | Parametric Oscillator |
QIP | Quantum Information Processing |
QT | Quantum Technologies |
RF | Radiofrequency |
SATP | Standard Atmospheric Temperature and Pressure |
TDVP | Time Dependent Variational Principle |
Appendix A. Harmonic Oscillator (HO)
Appendix A.1. Harmonic Oscillator with Damping
- Case 1—OverdampingWe denoteThen, a solution of Equation (A2) is
- Case 2—Critical dampingIn such a case the solution is expressed as
- Case 3—Underdamped oscillationsThe solution is cast asEquation (A8) can be cast as
Appendix B. Parametric Harmonic Oscillator—Floquet’s Coefficient—Hill’s Method
Appendix B.1. Hill’s Method
- (pure imaginary) and ;
- The frontiers of the stability domains are defined by (not integer);
- The associated dynamics are unstable when or , with .
Appendix B.2. Electrodynamic Ion Traps (EIT) Operating under SATP Conditions—Damping Case
References
- Brouwers, J.J.H. Asymptotic solutions for Mathieu instability under random parametric excitation and nonlinear damping. Physica D 2011, 240, 990–1000. [Google Scholar] [CrossRef]
- Chaki, S.; Bhattacherjee, A. Role of dissipation in the stability of a parametrically driven quantum harmonic oscillator. J. Korean Phy. Soc. 2021, 79, 600–605. [Google Scholar] [CrossRef]
- Nayfeh, A.H.; Mook, D.T. Nonlinear Oscillations; Wiley Classics Library, Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar] [CrossRef]
- Kovacic, I.; Brenner, M.J. (Eds.) The Duffing Equation: Nonlinear Oscillations and their Behaviour; Theoretical, Computational, and Statistical Physics; Wiley: Chichester, West Sussex, 2011. [Google Scholar] [CrossRef]
- Mond, M.; Cederbaum, G.; Khan, P.B.; Zarmi, Y. Stability Analysis Of The Non-Linear Mathieu Equation. J. Sound Vib. 1993, 167, 77–89. [Google Scholar] [CrossRef]
- Nayfeh, A.H.; Balachandran, B. Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods; Wiley Series in Nonlinear Science; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar] [CrossRef]
- Landa, H.; Drewsen, M.; Reznik, B.; Retzker, A. Classical and quantum modes of coupled Mathieu equations. J. Phys. A Math. Theor. 2012, 45, 455305. [Google Scholar] [CrossRef]
- Kovacic, I.; Rand, R.; Sah, S.M. Mathieu’s Equation and Its Generalizations: Overview of Stability Charts and Their Features. Appl. Mech. Rev. 2018, 70, 020802. [Google Scholar] [CrossRef]
- Daniel, D.J. Exact solutions of Mathieu’s equation. Prog. Theor. Exp. Phys. 2020, 2020, 043A01. [Google Scholar] [CrossRef]
- Karličić, D.; Chatterjee, T.; Cajić, M.; Adhikari, S. Parametrically amplified Mathieu-Duffing nonlinear energy harvesters. J. Sound Vib. 2020, 488, 115677. [Google Scholar] [CrossRef]
- Azimi, M. Stability and bifurcation of Mathieu–Duffing equation. Int. J. Nonlin. Mech. 2022, 144, 104049. [Google Scholar] [CrossRef]
- El-Dib, Y.O. An innovative efficient approach to solving damped Mathieu–Duffing equation with the non-perturbative technique. Commun. Nonlinear Sci. Numer. Simul. 2024, 128, 107590. [Google Scholar] [CrossRef]
- Rand, R.H. CISM Course: Time-Periodic Systems. 5–9 September 2016. Available online: http://audiophile.tam.cornell.edu/randpdf/rand_mathieu_CISM.pdf (accessed on 20 September 2024).
- Trypogeorgos, D.; Foot, C.J. Cotrapping different species in ion traps using multiple radio frequencies. Phys. Rev. A 2016, 94, 023609. [Google Scholar] [CrossRef]
- Katz, I.; Retzker, A.; Straub, R.; Lifshitz, R. Signatures for a Classical to Quantum Transition of a Driven Nonlinear Nanomechanical Resonator. Phys. Rev. Lett. 2007, 99, 040404. [Google Scholar] [CrossRef] [PubMed]
- Mihalcea, B.M.; Vişan, G.G. Nonlinear ion trap stability analysis. Phys. Scr. 2010, T140, 014057. [Google Scholar] [CrossRef]
- Akerman, N.; Kotler, S.; Glickman, Y.; Dallal, Y.; Keselman, A.; Ozeri, R. Single-ion nonlinear mechanical oscillator. Phys. Rev. A 2010, 82, 061402(R). [Google Scholar] [CrossRef]
- Doroudi, A. Application of a Modified Homotopy Perturbation Method for Calculation of Secular Axial Frequencies in a Nonlinear Ion Trap with Hexapole, Octopole and Decapole Superpositions. J. Bioanal. Biomed. 2012, 4, 85–91. [Google Scholar] [CrossRef]
- Wu, H.Y.; Xie, Y.; Wan, W.; Chen, L.; Zhou, F.; Feng, M. A complicated Duffing oscillator in the surface-electrode ion trap. Appl. Phys. B 2014, 114, 81–88. [Google Scholar] [CrossRef]
- Naito, T.; Naito, H.; Hashimoto, K. Multi-body wave function of ground and low-lying excited states using unornamented deep neural networks. Phys. Rev. Res. 2023, 5, 033189. [Google Scholar] [CrossRef]
- Tibaduiza, D.M.; Pires, L.; Rego, A.L.C.; Szilard, D.; Zarro, C.; Farina, C. Efficient algebraic solution for a time-dependent quantum harmonic oscillator. Phys. Scr. 2020, 95, 105102. [Google Scholar] [CrossRef]
- Xiong, C.; Zhou, X.; Zhang, N.; Zhan, L.; Chen, Y.; Nie, Z. Nonlinear Ion Harmonics in the Paul Trap with Added Octopole Field: Theoretical Characterization and New Insight into Nonlinear Resonance Effect. J. Am. Soc. Mass Spectrom. 2016, 27, 344–351. [Google Scholar] [CrossRef]
- Foot, C.J.; Trypogeorgos, D.; Bentine, E.; Gardner, A.; Keller, M. Two-frequency operation of a Paul trap to optimise confinement of two species of ions. Int. J. Mass. Spectrom. 2018, 430, 117–125. [Google Scholar] [CrossRef]
- Londry, F.A.; Hager, J.W. Mass selective axial ion ejection from a linear quadrupole ion trap. J. Am. Soc. Mass Spectrom. 2003, 14, 1130–1147. [Google Scholar] [CrossRef]
- Reece, M.P.; Huntley, A.P.; Moon, A.M.; Reilly, P.T.A. Digital Mass Analysis in a Linear Ion Trap without Auxiliary Waveforms. J. Am. Soc. Mass Spectrom. 2019, 31, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.; Hönig, D.; Weckesser, P.; Thielemann, F.; Schaetz, T.; Karpa, L. Mass-selective removal of ions from Paul traps using parametric excitation. Appl. Phys.B 2020, 126, 176. [Google Scholar] [CrossRef] [PubMed]
- Lewis, H.R.; Riesenfeld, W.B. An Exact Quantum Theory of the Time-Dependent Harmonic Oscillator and of a Charged Particle in a Time-Dependent Electromagnetic Field. J. Math. Phys. 1969, 10, 1458–1473. [Google Scholar] [CrossRef]
- Combescure, M. The quantum stability problem for some class of time-dependent hamiltonians. Ann. Phys. 1988, 185, 86–110. [Google Scholar] [CrossRef]
- Combescure, M. Crystallization of trapped ions—A quantum approach. Ann. Phys. 1990, 204, 113–123. [Google Scholar] [CrossRef]
- Gheorghe, V.N.; Vedel, F. Quantum dynamics of trapped ions. Phys. Rev. A 1992, 45, 4828–4831. [Google Scholar] [CrossRef]
- Stenholm, S. Quantum Motion in a Paul Trap. J. Mod. Opt. 1992, 39, 279–290. [Google Scholar] [CrossRef]
- Glauber, R.J. The Quantum Mechanics of Particles in Time-Dependent Quadrupole Fields. In Recent Developments in Quantum Optics; Inguva, R., Ed.; Plenum Press: New York, NY, USA, 1993; pp. 1–13. [Google Scholar]
- Gardiner, S.A.; Cirac, J.I.; Zoller, P. Quantum Chaos in an Ion Trap: The Delta-Kicked Harmonic Oscillator. Phys. Rev. Lett. 1997, 79, 4790–4793. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, V.I.; Rosa, L. Quantum singular oscillator as a model of a two-ion trap: An amplification of transition probabilities due to small-time variations of the binding potential. Phys. Rev. A 1998, 57, 2851–2858. [Google Scholar] [CrossRef]
- Pedrosa, I.A.; Rosas, A.; Guedes, I. Exact quantum motion of a particle trapped by oscillating fields. J. Phys. A Math. Gen. 2005, 38, 7757–7763. [Google Scholar] [CrossRef]
- Menicucci, N.C.; Milburn, G.J. Single trapped ion as a time-dependent harmonic oscillator. Phys. Rev. A 2007, 76, 052105. [Google Scholar] [CrossRef]
- Mihalcea, B.M. Nonlinear harmonic boson oscillator. Phys. Scr. 2010, T140, 014056. [Google Scholar] [CrossRef]
- Wittemer, M.; Schröder, J.P.; Hakelberg, F.; Kiefer, P.; Fey, C.; Schuetzhold, R.; Warring, U.; Schaetz, T. Trapped-ion toolkit for studies of quantum harmonic oscillators under extreme conditions. Phil. Trans. R. Soc. A 2020, 378, 20190230. [Google Scholar] [CrossRef]
- Keller, J.; Hou, P.Y.; McCormick, K.C.; Cole, D.C.; Erickson, S.D.; Wu, J.J.; Wilson, A.C.; Leibfried, D. Quantum Harmonic Oscillator Spectrum Analyzers. Phys. Rev. Lett. 2021, 126, 250507. [Google Scholar] [CrossRef] [PubMed]
- Mihalcea, B.M. Quasienergy operators and generalized squeezed states for systems of trapped ions. Ann. Phys. 2022, 442, 169826. [Google Scholar] [CrossRef]
- Coelho, S.S.; Queiroz, L.; Alves, D.T. Exact Solution of a Time-Dependent Quantum Harmonic Oscillator with Two Frequency Jumps via the Lewis-Riesenfeld Dynamical Invariant Method. Entropy 2022, 24, 1851. [Google Scholar] [CrossRef]
- García Herrera, E.; Torres-Leal, F.; Rodríguez-Lara, B.M. Continuous-time quantum harmonic oscillator state engineering. New J. Phys. 2023, 25, 123045. [Google Scholar] [CrossRef]
- Kato, A.; Goel, A.; Lee, R.; Ye, Z.; Karki, S.; Liu, J.J.; Nomerotski, A.; Blinov, B.B. Two-tone Doppler cooling of radial two-dimensional crystals in a radio-frequency ion trap. Phys. Rev. A 2022, 105, 023101. [Google Scholar] [CrossRef]
- Hong, J.; Kim, M.; Lee, H.; Lee, M. Numerical investigation of a segmented-blade ion trap with biasing rods. Appl. Phys. B 2022, 129, 16. [Google Scholar] [CrossRef]
- Colombo, S.; Pedrozo-Peñafiel, E.; Adiyatullin, A.F.; Li, Z.; Mendez, E.; Shu, C.; Vuletić, V. Time-reversal-based quantum metrology with many-body entangled states. Nat. Phys. 2022, 18, 925–930. [Google Scholar] [CrossRef]
- Wineland, D.J. Nobel Lecture: Superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 2013, 85, 1103–1114. [Google Scholar] [CrossRef]
- Wolf, F.; Shi, C.; Heip, J.C.; Gessner, M.; Pezzè, L.; Smerzi, A.; Schulte, M.; Hammerer, K.; Schmidt, P.O. Motional Fock states for quantum-enhanced amplitude and phase measurements with trapped ions. Nat. Commun. 2019, 10, 2929. [Google Scholar] [CrossRef] [PubMed]
- Lamata, L.; Mezzacapo, A.; Casanova, J.; Solano, E. A high-precision segmented Paul trap with minimized micromotion for an optical multiple-ion clock. EPJ Quantum Technol. 2014, 1, 9. [Google Scholar] [CrossRef]
- Martínez-Lahuerta, V.J.; Eilers, S.; Mehlstäubler, T.E.; Schmidt, P.O.; Hammerer, K. Ab initio quantum theory of mass defect and time dilation in trapped-ion optical clocks. Phys. Rev. A 2022, 106, 032803. [Google Scholar] [CrossRef]
- Leibrandt, D.R.; Porsev, S.G.; Cheung, C.; Safronova, M.S. Prospects of a thousand-ion Sn2+ Coulomb-crystal clock with sub-10−19 inaccuracy. Nat. Comm. 2024, 15, 5663. [Google Scholar] [CrossRef] [PubMed]
- Schkolnik, V.; Budker, D.; Fartmann, O.; Flambaum, V.; Hollberg, L.; Kalaydzhyan, T.; Kolkowitz, S.; Krutzik, M.; Ludlow, A.; Newbury, N.; et al. Optical atomic clock aboard an Earth-orbiting space station (OACESS): Enhancing searches for physics beyond the standard model in space. Quantum Sci. Technol. 2022, 8, 014003. [Google Scholar] [CrossRef]
- Tsai, Y.D.; Eby, J.; Safronova, M.S. Direct detection of ultralight dark matter bound to the Sun with space quantum sensors. Nat. Astron. 2023, 7, 113–121. [Google Scholar] [CrossRef]
- Reiter, F.; Sørensen, A.S.; Zoller, P.; Muschik, C.A. Dissipative quantum error correction and application to quantum sensing with trapped ions. Nat. Comm. 2017, 8, 1822. [Google Scholar] [CrossRef]
- Kaiser, R.; Leduc, M.; Perrin, H. (Eds.) Ultra-Cold Atoms, Ions, Molecules and Quantum Technologies; EDP Sciences: Les Ulis, France, 2022. [Google Scholar] [CrossRef]
- Okada, K.; Wada, M.; Takayanagi, T.; Ohtani, S.; Schuessler, H.A. Characterization of ion Coulomb crystals in a linear Paul trap. Phys. Rev. A 2010, 81, 013420. [Google Scholar] [CrossRef]
- Bahrami, A.; Müller, M.; Drechsler, M.; Joger, J.; Gerritsma, R.; Schmidt-Kaler, F. Operation of a Microfabricated Planar Ion-Trap for Studies of a Yb+–Rb Hybrid Quantum System. Phys. Status Solidi B 2019, 256, 1800647. [Google Scholar] [CrossRef]
- Perego, E.; Duca, L.; Sias, C. Electro-Optical Ion Trap for Experiments with Atom-Ion Quantum Hybrid Systems. Appl. Sci. 2020, 10, 2222. [Google Scholar] [CrossRef]
- Niranjan, M.; Prakash, A.; Rangwala, S.A. Analysis of Multipolar Linear Paul Traps for Ion–Atom Ultracold Collision Experiments. Atoms 2021, 9, 38. [Google Scholar] [CrossRef]
- Coles, P. Pushing the Limits of Quantum Sensing with Variational Quantum Circuits. Physics 2021, 14, 172. [Google Scholar] [CrossRef]
- Peik, E. Optical Atomic Clocks. In Photonic Quantum Technologies; Benyoucef, M., Ed.; Wiley: Hoboken, NJ, USA, 2023; Chapter 14; pp. 333–348. [Google Scholar] [CrossRef]
- Mehta, K.K.; Zhang, C.; Malinowski, M.; Nguyen, T.L.; Stadler, M.; Home, J.P. Integrated optical multi-ion quantum logic. Nature 2020, 586, 533–537. [Google Scholar] [CrossRef]
- Affolter, M.; Ge, W.; Bullock, B.; Burd, S.C.; Gilmore, K.A.; Lilieholm, J.F.; Carter, A.L.; Bollinger, J.J. Toward improved quantum simulations and sensing with trapped two-dimensional ion crystals via parametric amplification. Phys. Rev. A 2023, 107, 032425. [Google Scholar] [CrossRef]
- Ye, J.; Zoller, P. Essay: Quantum Sensing with Atomic, Molecular, and Optical Platforms for Fundamental Physics. Phys. Rev. Lett. 2024, 132, 190001. [Google Scholar] [CrossRef] [PubMed]
- Barontini, G.; Boyer, V.; Calmet, X.; Fitch, N.J.; Forgan, E.M.; Godun, R.M.; Goldwin, J.; Guarrera, V.; Hill, I.R.; Jeong, M.; et al. QSNET, a network of clock for measuring the stability of fundamental constants. In Quantum Technology: Driving Commercialisation of an Enabling Science II; Padgett, M.J., Bongs, K., Fedrizzi, A., Politi, A., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2021; Volume 11881, pp. 63–66. [Google Scholar] [CrossRef]
- Wolf, F.; Schmidt, P.O. Quantum sensing of oscillating electric fields with trapped ions. Meas. Sens. 2021, 18, 100271. [Google Scholar] [CrossRef]
- Fountas, P.N.; Poggio, M.; Willitsch, S. Classical and quantum dynamics of a trapped ion coupled to a charged nanowire. New J. Phys. 2019, 21, 013030. [Google Scholar] [CrossRef]
- Vilasi, G. Hamiltonian Dynamics; World Scientific: Singapore, 2001. [Google Scholar] [CrossRef]
- Mihalcea, B.M. Study of quasiclassical dynamics of trapped ions using the coherent state formalism and associated algebraic groups. Rom. J. Phys. 2017, 62, 113. Available online: https://www.nipne.ro/rjp/2017_62_5-6/RomJPhys.62.113.pdf (accessed on 20 September 2024).
- Onah, F.E.; Garcíía Herrera, E.; Ruelas-Galván, J.A.; Juárez Rangel, G.; Real Norzagaray, E.; Rodríguez-Lara, B.M. A quadratic time-dependent quantum harmonic oscillator. Sci. Rep. 2023, 13, 8312. [Google Scholar] [CrossRef]
- Lemmer, A.; Plenio, M.B.; Bermudez, A. Noise studies of driven geometric phase gates with trapped ions. In Ion Traps for Tomorrow’s Applications; Knoop, M., Marzoli, I., Morigi, G., Eds.; International School of Physics “Enrico Fermi”, Institute of Physics, Societa Italiana di Fisica: Bologna, Italy, 2015; Volume 189, pp. 229–244. [Google Scholar] [CrossRef]
- Wang, Y.X.; Liu, S.C.; Cheng, L.; Peng, L.Y. Systematic investigations on ion dynamics with noises in Paul trap. J. Phys. A Math. Theor. 2023, 56, 465302. [Google Scholar] [CrossRef]
- Mihalcea, B.M. Mathieu–Hill Equation Stability Analysis for Trapped Ions: Anharmonic Corrections for Nonlinear Electrodynamic Traps. Photonics 2024, 11, 551. [Google Scholar] [CrossRef]
- Blümel, R.; Kappler, C.; Quint, W.; Walther, H. Chaos and order of laser-cooled ions in a Paul trap. Phys. Rev. A 1989, 40, 808–823. [Google Scholar] [CrossRef] [PubMed]
- Brillouin, L. A practical method for solving Hill’s equation. Quart. Appl. Math. 1948, 6, 167–178. [Google Scholar] [CrossRef]
- Magnus, W.; Winkler, S. Hill’s Equation; Interscience Tracts in Pure and Applied Mathematics; Wiley: New York, NY, USA, 1966; Volume 20. [Google Scholar] [CrossRef]
- Wolf, G. Mathieu Functions and Hill’s Equation. In NIST Handbook of Mathematical Functions; Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W., Eds.; NIST & Cambridge University Press: New York, NY, USA, 2010; Chapter 28; pp. 651–681. [Google Scholar]
- Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis, 5th ed.; Moll, V.H., Ed.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Major, F.G.; Gheorghe, V.N.; Werth, G. Charged Particle Traps: Physics and Techniques of Charged Particle Field Confinement; Springer Series on Atomic, Optical and Plasma Physics; Springer: Berlin/Heidelberg, Germany, 2005; Volume 37. [Google Scholar] [CrossRef]
- Knoop, M.; Madsen, N.; Thompson, R.C. (Eds.) Physics with Trapped Charged Particles: Lectures from the Les Houches Winter School; Imperial College Press & World Scientific: London, UK, 2014. [Google Scholar] [CrossRef]
- Knoop, M.; Marzoli, I.; Morigi, G. (Eds.) Ion Traps for Tomorrow Applications; Proceedings of the International School of Physics Enrico Fermi; Società Italiana di Fisica and IOS Press: Bologna, Italy, 2015; Volume 189. [Google Scholar]
- Kajita, M. Ion Traps; IOP Publishing: Bristol, UK, 2022. [Google Scholar] [CrossRef]
- Drewsen, M. Ion Coulomb crystals and their applications. In Ion Traps for Tomorrow’s Applications; Knoop, M., Marzoli, I., Morigi, G., Eds.; International School of Physics “Enrico Fermi”, Institute of Physics, Societa Italiana di Fisica: Bologna, Italy, 2015; Volume 189, pp. 81–101. [Google Scholar] [CrossRef]
- Drewsen, M. The linear-zigzag structural transition in cold ion chains. In Ion Traps for Tomorrow’s Applications; Knoop, M., Marzoli, I., Morigi, G., Eds.; International School of Physics “Enrico Fermi”, Institute of Physics, Societa Italiana di Fisica: Bologna, Italy, 2015; Volume 189, pp. 103–114. [Google Scholar] [CrossRef]
- Joshi, M.K.; Fabre, A.; Maier, C.; Brydges, T.; Kiesenhofer, D.; Hainzer, H.; Blatt, R.; Roos, C.F. Polarization-gradient cooling of 1D and 2D ion Coulomb crystals. New J. Phys. 2020, 22, 103013. [Google Scholar] [CrossRef]
- Spivey, R.F.; Inlek, I.V.; Jia, Z.; Crain, S.; Sun, K.; Kim, J.; Vrijsen, G.; Fang, C.; Fitzgerald, C.; Kross, S.; et al. High-Stability Cryogenic System for Quantum Computing with Compact Packaged Ion Traps. IEEE Trans. Quant. Eng. 2022, 3, 1–11. [Google Scholar] [CrossRef]
- Zhukas, L.A.; Millican, M.J.; Svihra, P.; Nomerotski, A.; Blinov, B.B. Direct Observation of Ion Micromotion in a Linear Paul Trap. Phys. Rev. A 2021, 103, 023105. [Google Scholar] [CrossRef]
- Rudyi, S.S.; Romanova, A.V.; Rozhdestvensky, Y.V. Numerical analysis of phase transitions in ion Coulomb crystals. Comput. Part. Mech. 2023, 11, 329–337. [Google Scholar] [CrossRef]
- Rudyi, S.; Ivanov, A.; Shcherbinin, D. Fractal Quasi-Coulomb Crystals in Ion Trap with Cantor Dust Electrode Configuration. Fractal Fract. 2023, 7, 686. [Google Scholar] [CrossRef]
- Duca, L.; Mizukami, N.; Perego, E.; Inguscio, M.; Sias, C. Orientational Melting in a Mesoscopic System of Charged Particles. Phys. Rev. Lett. 2023, 131, 083602. [Google Scholar] [CrossRef]
- Mihalcea, B.M.; Lynch, S. Investigations on Dynamical Stability in 3D Quadrupole Ion Traps. Appl. Sci. 2021, 11, 2938. [Google Scholar] [CrossRef]
- Farrelly, D.; Howard, J.E. Double-well dynamics of two ions in the Paul and Penning traps. Phys. Rev. A 1994, 49, 1494–1497. [Google Scholar] [CrossRef]
- Burgermeister, T.; Mehlstäubler, T.E. Creation and dynamics of topological defects in ion Coulomb crystals. In Ion Traps for Tomorrow’s Applications; Knoop, M., Marzoli, I., Morigi, G., Eds.; International School of Physics “Enrico Fermi”, Institute of Physics, Societa Italiana di Fisica: Bologna, Italy, 2015; Volume 189, pp. 115–125. [Google Scholar] [CrossRef]
- Wen, W.; Zhu, S.; Xie, Y.; Ou, B.; Wu, W.; Chen, P.; Gong, M.; Guo, G. Generalized Kibble-Zurek mechanism for defects formation in trapped ions. Sci. China Phys. Mech. Astron. 2023, 66, 280311. [Google Scholar] [CrossRef]
- Blanch, G. On the Computation of Mathieu Functions. J. Math. Phys. 1946, 25, 1–20. [Google Scholar] [CrossRef]
- McLachlan, N.W. Theory and Application of Mathieu Functions; Dover Publications: New York, NY, USA, 1964; Volume 1233. [Google Scholar]
- Pedregosa-Gutierrez, J.; Champenois, C.; Kamsap, M.R.; Hagel, G.; Houssin, M.; Knoop, M. Symmetry breaking in linear multipole traps. J. Mod. Opt. 2018, 65, 529–537. [Google Scholar] [CrossRef]
- Brewer, R.G.; Hoffnagle, J.; DeVoe, R.G.; Reyna, L.; Henshaw, W. Collision-induced two-ion chaos. Nature 1990, 344, 305–309. [Google Scholar] [CrossRef]
- Hoffnagle, J.; Brewer, R.G. On the Frequency-Locked Orbits of Two Particles in a Paul Trap. Science 1994, 265, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Mihalcea, B.M. Squeezed coherent states of motion for ions confined in quadrupole and octupole ion traps. Ann. Phys. 2018, 388, 100–113. [Google Scholar] [CrossRef]
- Coelho, S.S.; Queiroz, L.; Alves, D.T. Squeezing equivalence of quantum harmonic oscillators under different frequency modulations. Phys. Scr. 2024, 99, 085104. [Google Scholar] [CrossRef]
- Hassani, S. Mathematical Methods: For Students of Physics and Related Fields, 2nd ed.; Physics and Astronomy; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Riley, K.F.; Hobson, M.P. Essential Mathematical Methods for the Physical Sciences; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Hassani, S. Mathematical Physics: A Modern Introduction to Its Foundations, 2nd ed.; Physics and Astronomy; Springer: Cham, Switzerland, 2013. [Google Scholar] [CrossRef]
- Pence, T.J.; Wichman, I.S. Essential Mathematics for Engineers and Scientists; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Richards, D. Advanced Mathematical Methods with Maple; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Kramer, P.; Saraceno, M. (Eds.) Geometry of the Time-Dependent Variational Principle in Quantum Mechanics; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1981; Volume 140. [Google Scholar] [CrossRef]
- Ceausescu, V.; Gheorghe, A. Classical limit and quantization of hamiltonian systems. In Symmetries and Semiclassical Features of Nuclear Dynamics; Raduta, A.A., Ed.; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1987; Volume 279, pp. 69–117. [Google Scholar] [CrossRef]
- Mihalcea, B. Coherent States for Trapped Ions: Applications in Quantum Optics and Precision Measurements. In CPT and Lorentz Symmetry; World Scientific: Singapore, 2023; pp. 192–195. [Google Scholar] [CrossRef]
- Mihalcea, B.M. Semiclassical dynamics for an ion confined within a nonlinear electromagnetic trap. Phys. Scr. 2011, T143, 014018. [Google Scholar] [CrossRef]
- Schlipf, S. From a Single Ion to a Mesoscopic System: Crystalization of Ions in Paul Traps. In Coherent and Collective Interactions of Particles and Radiation Beams; Aspect, A., Barletta, W., Bonifacio, R., Eds.; Proceedings of the International School Physics “Enrico Fermi”; IOS Press: Tepper Drive Clifton, VA, USA, 1996; Volume 131, pp. 61–99. [Google Scholar] [CrossRef]
- Mihalcea, B.M.; Filinov, V.S.; Syrovatka, R.A.; Vasilyak, L.M. The physics and applications of strongly coupled Coulomb systems (plasmas) levitated in electrodynamic traps. Phys. Rep. 2023, 1016, 1–103. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. (Eds.) Mathieu Functions; Applied Mathematical Series; US Department of Commerce, National Bureau of Standards: Washington, DC, USA, 1972; Volume 55, Chapter 20; pp. 722–750.
- Bateman, J. Higher Transcendental Functions; Robert E. Krieger Publishing: Malabar, FL, USA, 1981; Volume 3, Chapter 16; pp. 91–166. [Google Scholar]
- Moussa, R.A. Generalization of Ince’s Equation. J. Appl. Math. Phys. 2014, 2, 1171–1182. [Google Scholar] [CrossRef]
- Tibaduiza, D.M.; Pires, L.; Szilard, D.; Zarro, C.A.D.; Farina, C.; Rego, A.L.C. A Time-Dependent Harmonic Oscillator with Two Frequency Jumps: An Exact Algebraic Solution. Braz. J. Phys. 2020, 50, 634–646. [Google Scholar] [CrossRef]
- Sträng, J.E. On the characteristic exponents of Floquet solutions to the Mathieu equation. Bull. Acad. R. Belg. 2005, 16, 269–287. [Google Scholar] [CrossRef]
- Jones, T. Mathieu’s Equations and the ideal RF-Paul Trap. Available online: http://einstein.drexel.edu/~tim/open/mat/mat.pdf (accessed on 20 September 2024).
- Sevugarajan, S.; Menon, A.G. Transition curves and iso-βu lines in nonlinear Paul traps. Int. J. Mass Spectrom. 2002, 218, 181–196. [Google Scholar] [CrossRef]
- Katz, O.; Cetina, M.; Monroe, C. Programmable N-Body Interactions with Trapped Ions. PRX Quantum 2023, 4, 030311. [Google Scholar] [CrossRef]
- Spampinato, A.; Stacey, J.; Mulholland, S.; Robertson, B.I.; Klein, H.A.; Huang, G.; Barwood, G.P.; Gill, P. An ion trap design for a space-deployable strontium-ion optical clock. Proc. R. Soc. A 2024, 480, 20230593. [Google Scholar] [CrossRef]
- van Eijkelenborg, M.A.; Dholakia, K.; Storkey, M.E.M.; Segal, D.M.; Thompson, R.C. A driven, trapped, laser cooled ion cloud: A forced damped oscillator. Opt. Commun. 1999, 159, 169–176. [Google Scholar] [CrossRef]
- Mihalcea, B.M. A quantum parametric oscillator in a radiofrequency trap. Phys. Scr. 2009, T135, 014006. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, W. Lie transformation method on quantum state evolution of a general time-dependent driven and damped parametric oscillator. Ann. Phys. 2016, 373, 424–455. [Google Scholar] [CrossRef]
- Weyl, H. Meromorphic Functions and Analytic Curves; Annals of Mathematics Studies; Princeton University Press—De Gruyter: Princeton, NJ, USA, 2016; Volume 12. [Google Scholar] [CrossRef]
- Kotana, A.N.; Mohanty, A.K. Computation of Mathieu stability plot for an arbitrary toroidal ion trap mass analyser. Int. J. Mass Spectrom. 2017, 414, 13–22. [Google Scholar] [CrossRef]
- Moore, M.; Blümel, R. Quantum manifestations of order and chaos in the Paul trap. Phys. Rev. A 1993, 48, 3082–3091. [Google Scholar] [CrossRef]
- Hoffnagle, J.A.; Brewer, R.G. Stability of two-ion crystals in the Paul trap: A comparison of exact and pseudopotential calculations. Appl. Phys. B 1995, 60, 113–117. [Google Scholar] [CrossRef]
- Paul, W. Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 1990, 62, 531–540. [Google Scholar] [CrossRef]
- Blümel, R. Nonlinear dynamics of trapped ions. Phys. Scr. 1995, T59, 369–379. [Google Scholar] [CrossRef]
- Blümel, R.; Bonneville, E.; Carmichael, A. Chaos and bifurcations in ion traps of cylindrical and spherical design. Phys. Rev. E 1998, 57, 1511–1518. [Google Scholar] [CrossRef]
- Tandel, D.D.; Chatterjee, A.; Mohanty, A.K. Quadrupole ion trap with dipolar DC excitation: Motivation, nonlinear dynamics, and simple formulas. Nonlinear Dyn. 2023, 111, 15837–15852. [Google Scholar] [CrossRef]
- Gheorghe, V.N.; Giurgiu, L.; Stoican, O.; Cacicovschi, D.; Molnar, R.; Mihalcea, B. Ordered Structures in a Variable Length AC Trap. Acta Phys. Pol. A 1998, 93, 625–629. [Google Scholar] [CrossRef]
- Kulkarni, P.; Baron, P.A.; Willeke, K. (Eds.) Aerosol Measurement: Principles, Techniques and Applications, 3rd ed.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Syrovatka, R.A.; Filinov, V.S.; Vasilyak, L.M.; Pecherkin, V.Y.; Deputatova, L.V.; Vladimirov, V.I.; Popel, O.S.; Tarasenko, A.B. Cleaning dielectric surfaces by the electrical fields of the linear electrodynamic Paul trap. J. Electrostat. 2021, 112, 103583. [Google Scholar] [CrossRef]
- Rybin, V.; Shcherbinin, D.; Semynin, M.; Gavenchuk, A.; Zakharov, V.; Ivanov, A.; Rozhdestvensky, Y.; Rudyi, S. Novel nonlinear damping identification method: Simultaneous size, mass, charge and density measurements of a microparticle in quadrupole trap. Powder Technol. 2023, 427, 118717. [Google Scholar] [CrossRef]
- Winter, H.; Ortjohann, H.W. Simple demonstration of storing macroscopic particles in a “Paul trap”. Am. J. Phys. 1991, 59, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Uehara, K. Dynamics of a single particle in a Paul trap in the presence of the damping force. Appl. Phys. B 1995, 61, 159–163. [Google Scholar] [CrossRef]
- Mihalcea, B.M.; Visan, G.T.; Giurgiu, L.C.; Radan, S. Optimization of ion trap geometries and of the signal to noise ratio for high resolution spectroscopy. J. Optoelectron. Adv. Mat. 2008, 10, 1994–1998. Available online: https://old.joam.inoe.ro/download.php?idu=1538 (accessed on 20 September 2024).
- Rudyi, S.S.; Vovk, T.A.; Kosternoi, I.A.; Rybin, V.V.; Rozhdestvensky, Y.V. Single-phase multipole radiofrequency trap. AIP Adv. 2020, 10, 085016. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihalcea, B.M. Solutions of the Mathieu–Hill Equation for a Trapped-Ion Harmonic Oscillator—A Qualitative Discussion. Mathematics 2024, 12, 2963. https://doi.org/10.3390/math12192963
Mihalcea BM. Solutions of the Mathieu–Hill Equation for a Trapped-Ion Harmonic Oscillator—A Qualitative Discussion. Mathematics. 2024; 12(19):2963. https://doi.org/10.3390/math12192963
Chicago/Turabian StyleMihalcea, Bogdan M. 2024. "Solutions of the Mathieu–Hill Equation for a Trapped-Ion Harmonic Oscillator—A Qualitative Discussion" Mathematics 12, no. 19: 2963. https://doi.org/10.3390/math12192963
APA StyleMihalcea, B. M. (2024). Solutions of the Mathieu–Hill Equation for a Trapped-Ion Harmonic Oscillator—A Qualitative Discussion. Mathematics, 12(19), 2963. https://doi.org/10.3390/math12192963