LMKCDEY Revisited: Speeding Up Blind Rotation with Signed Evaluation Keys
Abstract
:1. Introduction
1.1. Contribution
1.2. Organization
2. Preliminaries
2.1. Notation
2.2. Basic Learning with Errors (LWE) Encryption and Homomorphic Operations
2.3. Modulus Switching
2.4. LWE Key Switching
- : Generates a key switching key
- : Given a ciphertext , it decomposes into blocks of size and outputs the ciphertext
2.4.1. Key Switching in RLWE
- : Generates a key switching key .
- : Given a ciphertext , it outputs the ciphertext
2.4.2. Automorphisms in RLWE
- : Given a ciphertext and a switching key , the automorphism is applied to and , yielding , which is an RLWE encryption of under the new secret key . The resulting ciphertext is then transformed back to using the key switching function .
2.4.3. LWE Extraction from RLWE
2.4.4. Secret Key Distribution in LWE-Based HE
2.5. FHEW-like HE and Blind Rotation
2.5.1. DM/AP Blind Rotation
2.5.2. CGGI/GINX Blind Rotation
2.5.3. LMKCDEY
Algorithm 1: LMKCDEY Blind Rotation Sub Algorithm for odd |
|
3. Proposed Scheme
3.1. Core Algorithm
3.2. Windowing Technique
Algorithm 2: Core of Proposed Blind Rotation Sub Algorithm for odd |
|
4. Theoretical Analysis
4.1. Time Complexity, Key Size, and Noise Analysis
4.1.1. Time Complexity
4.1.2. Noise
4.1.3. Key Size
4.2. Comparison with Prior Work
5. Empirical Results
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CGGI | Chillotti–Gama–Georgieva–Izabachene |
DM | Ducas–Micciancio |
GINX | Gama–Izabachene–Nguyen–Xiang |
HE | Homomorphic Encryption |
LMKCDEY | Lee–Micciancio–Kim–Choi–Deryabin–Eom–Yoo |
References
- Asharov, G.; Jain, A.; López-Alt, A.; Tromer, E.; Vaikuntanathan, V.; Wichs, D. Multiparty computation with low communication, computation and interaction via threshold FHE. In Proceedings of the EUROCRYPT 2012, Cambridge, UK, 15–19 April 2012; pp. 483–501. [Google Scholar]
- Lipmaa, H. An Oblivious Transfer Protocol with Log-Squared Communication. In Proceedings of the Information Security, 8th International Conference, ISC 2005, Singapore, 20–23 September 2005; Zhou, J., Lopez, J., Deng, R.H., Bao, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 314–328. [Google Scholar]
- Gilad-Bachrach, R.; Dowlin, N.; Laine, K.; Lauter, K.; Naehrig, M.; Wernsing, J. Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy. In Proceedings of the International Conference on Machine Learning (PMLR), New York, NY, USA, 20–22 June 2016; pp. 201–210. [Google Scholar]
- Regev, O. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005; STOC ’05. pp. 84–93. [Google Scholar] [CrossRef]
- Lyubashevsky, V.; Peikert, C.; Regev, O. On ideal lattices and learning with errors over rings. J. ACM (JACM) 2013, 60, 1–35. [Google Scholar] [CrossRef]
- Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 169–178. [Google Scholar]
- Ducas, L.; Micciancio, D. FHEW: Bootstrapping homomorphic encryption in less than a second. In Proceedings of the EUROCRYPT 2015, Sofia, Bulgaria, 26–30 April 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 617–640. [Google Scholar]
- Chillotti, I.; Gama, N.; Georgieva, M.; Izabachene, M. Faster packed homomorphic operations and efficient circuit bootstrapping for TFHE. In Proceedings of the Advances in Cryptology—ASIACRYPT 2017, Hong Kong, China, 3–7 December 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 377–408. [Google Scholar]
- Brakerski, Z.; Gentry, C.; Vaikuntanathan, V. (Leveled) fully homomorphic encryption without bootstrapping. In Proceedings of the Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, 8–10 January 2012; Goldwasser, S., Ed.; ACM: New York, NY, USA, 2012; pp. 309–325. [Google Scholar] [CrossRef]
- Cheon, J.H.; Kim, A.; Kim, M.; Song, Y. Homomorphic encryption for arithmetic of approximate numbers. In Proceedings of the Advances in Cryptology—ASIACRYPT 2017, Hong Kong, China, 3–7 December 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 409–437. [Google Scholar]
- Brakerski, Z. Fully homomorphic encryption without modulus switching from classical GapSVP. In Proceedings of the Advances in Cryptology—CRYPTO 2012, Santa Barbara, CA, USA, 19–23 August 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 868–886. [Google Scholar]
- Fan, J.; Vercauteren, F. Somewhat Practical Fully Homomorphic Encryption. IACR Cryptol. ePrint Arch. 2012, 2012/144. [Google Scholar]
- Gentry, C.; Sahai, A.; Waters, B. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Proceedings of the Advances in Cryptology—CRYPTO 2013, Santa Barbara, CA, USA, 18–22 August 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 75–92. [Google Scholar]
- Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. TFHE: Fast fully homomorphic encryption over the torus. J. Cryptol. 2020, 33, 34–91. [Google Scholar] [CrossRef]
- Lee, Y.; Micciancio, D.; Kim, A.; Choi, R.; Deryabin, M.; Eom, J.; Yoo, D. Efficient FHEW Bootstrapping with Small Evaluation Keys, and Applications to Threshold Homomorphic Encryption. In Proceedings of the Advances in Cryptology—EUROCRYPT 2023, Lyon, France, 23–27 April 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 227–256. [Google Scholar]
- Micciancio, D.; Polyakov, Y. Bootstrapping in FHEW-like cryptosystems. In Proceedings of the WAHC’21, Virtual, 15 November 2021; pp. 17–28. [Google Scholar]
- Joye, M.; Paillier, P. Blind Rotation in Fully Homomorphic Encryption with Extended Keys. In Proceedings of the International Symposium on Cyber Security, Cryptology, and Machine Learning, Be’er Sheva, Israel, 30 June–1 July 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–18. [Google Scholar]
- OpenFHE. Open-Source Fully Homomorphic Encryption Library. 2022. Available online: https://github.com/openfheorg/openfhe-development (accessed on 1 September 2024).
- Kim, A.; Polyakov, Y.; Zucca, V. Revisiting homomorphic encryption schemes for finite fields. In Proceedings of the Advances in Cryptology—ASIACRYPT 2021, Singapore, 5–12 December 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 608–639. [Google Scholar]
- Brakerski, Z.; Vaikuntanathan, V. Fully homomorphic encryption from Ring-LWE and security for key dependent messages. In Proceedings of the Advances in Cryptology—CRYPTO 2011, Santa Barbara, CA, USA, 14–18 August 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 505–524. [Google Scholar]
- Albrecht, M.; Chase, M.; Chen, H.; Ding, J.; Goldwasser, S.; Gorbunov, S.; Halevi, S.; Hoffstein, J.; Laine, K.; Lauter, K.; et al. Homomorphic Encryption Security Standard; Technical report; HomomorphicEncryption.org: Toronto, ON, Canada, 2018. [Google Scholar]
- Espitau, T.; Joux, A.; Kharchenko, N. On a dual/hybrid approach to small secret LWE. In Proceedings of the Progress in Cryptology—INDOCRYPT 2020, Bangalore, India, 13–16 December 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 440–462. [Google Scholar]
- Mouchet, C.; Troncoso-Pastoriza, J.; Bossuat, J.P.; Hubaux, J.P. Multiparty homomorphic encryption from ring-learning-with-errors. Proc. Priv. Enhancing Technol. 2021, 2021, 291–311. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, Z.; Chen, L.; Che, X.; Liu, W.; Yang, X. Multi-key fully homomorphic encryption scheme with compact ciphertext. IACR Cryptol. ePrint Arch. 2021, 2021/1131. [Google Scholar]
- Halevi, S.; Shoup, V. Design and Implementation of HElib: A Homomorphic Encryption Library. IACR Cryptol. ePrint Arch. 2020, 2020/1481. [Google Scholar]
- Bossuat, J.P.; Cammarota, R.; Cheon, J.H.; Chillotti, I.; Curtis, B.R.; Dai, W.; Gong, H.; Hales, E.; Kim, D.; Kumara, B.; et al. Security Guidelines for Implementing Homomorphic Encryption. IACR Cryptol. ePrint Arch. 2024, 2024/463. [Google Scholar]
- Alperin-Sheriff, J.; Peikert, C. Faster bootstrapping with polynomial error. In Proceedings of the CRYPTO 2014, Santa Barbara, CA, USA, 17–21 August 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 297–314. [Google Scholar]
- Kim, A.; Deryabin, M.; Eom, J.; Choi, R.; Lee, Y.; Ghang, W.; Yoo, D. General bootstrapping approach for RLWE-based homomorphic encryption. IEEE Trans. Comput. 2024, 73, 86–96. [Google Scholar] [CrossRef]
- Bonte, C.; Iliashenko, I.; Park, J.; Pereira, H.V.L.; Smart, N.P. FINAL: Faster FHE Instantiated with NTRU and LWE. In Proceedings of the Advances in Cryptology—ASIACRYPT 2022, Kolkata, India, 9–13 December 2022; pp. 188–215. [Google Scholar]
- Cheon, J.H.; Choe, H.; Park, J.H. Tree-based Lookup Table on Batched Encrypted Queries Using Homomorphic Encryption. IACR Cryptol. ePrint Arch. 2024, 2024/087. [Google Scholar]
- Gama, N.; Izabachene, M.; Nguyen, P.Q.; Xie, X. Structural lattice reduction: Generalized worst-case to average-case reductions and homomorphic cryptosystems. In Proceedings of the EUROCRYPT 2016, Vienna, Austria, 8–12 May 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 528–558. [Google Scholar]
Method | # ⊙ Mult | # Keys | |
---|---|---|---|
AP [7,27] | |||
Ternary GINX [14,28,29] | |||
LMKCDEY [15] | |||
Proposed |
Method | Key Dist. | q | 1 | ||||||
---|---|---|---|---|---|---|---|---|---|
STD128 | Ternary | 503 | 1024 | 1024 | 27 | 512 | 32 | 32 | |
STD128_LMKCDEY | 446 | 1024 | 8192 | 1024 | 28 | 1024 | 32 | 32 |
Parameter Set | Method | Runtime (ms) | BR Key Size (MB) | Fail. Prob. (log) |
---|---|---|---|---|
STD128 (Ternary) | AP | |||
STD128 (Ternary) | GINX | |||
STD128_LMKCDEY (Gaussian) | AP | |||
STD128_LMKCDEY (Gaussian, ) | LMKCDEY | |||
STD128_LMKCDEY (Gaussian, ) | Proposed | 93.0 | 36.71 |
Parameter Set | Method | Total Runtime (ms) |
---|---|---|
STD128 | AP | 401,505 |
STD128 | GINX | 56,991 |
STD128_LMKCDEY | AP | 404,320 |
STD128_LMKCDEY | LMKCDEY | 43,505 |
STD128_LMKCDEY | Proposed | 46,856 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y. LMKCDEY Revisited: Speeding Up Blind Rotation with Signed Evaluation Keys. Mathematics 2024, 12, 2909. https://doi.org/10.3390/math12182909
Lee Y. LMKCDEY Revisited: Speeding Up Blind Rotation with Signed Evaluation Keys. Mathematics. 2024; 12(18):2909. https://doi.org/10.3390/math12182909
Chicago/Turabian StyleLee, Yongwoo. 2024. "LMKCDEY Revisited: Speeding Up Blind Rotation with Signed Evaluation Keys" Mathematics 12, no. 18: 2909. https://doi.org/10.3390/math12182909
APA StyleLee, Y. (2024). LMKCDEY Revisited: Speeding Up Blind Rotation with Signed Evaluation Keys. Mathematics, 12(18), 2909. https://doi.org/10.3390/math12182909