Solution of Inverse Photoacoustic Problem for Semiconductors via Phase Neural Network
Abstract
:1. Introduction
2. Phase of Photoacoustic Response of Semiconductors—Direct PA Problem
3. Silicon n-Type Phase Neural Network
4. Inverse Solution of the Photoacoustic Problem
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Parameter | Values |
---|---|
sample radius | Rs = 4 mm |
minority carrier diffusion coefficient | Dp = 1.2·10−3 m2s −1 |
adiabatic ratio | γ = 1.4 |
photoacoustic cell length | l0 = 2·10−3 m |
standard pressure | P0 = 101 kPa |
coefficient of absorption | β = 2.58·105 m−1 |
intensity of the incident light | I0 = 150 W/m2 |
excitation energy | ε = 1.88 eV |
gap energy | εg = 2.1 eV |
carrier lifetime | τ = 5 × 10−6 s |
front surface recombination rate | Sg = 2 m/s |
back surface recombination rate | Sb = 24 m/s |
References
- Rosencwaig, A.; Gerscho, A. Photoacoustic Effect with Solids: A Theoretical Treatment. Science 1975, 190, 556–557. [Google Scholar] [CrossRef]
- Rosencwaig, A.; Gersho, A. Theory of the photoacoustic effect with solids. J. Appl. Phys. 1976, 47, 64–69. [Google Scholar] [CrossRef]
- Tam, A.C. Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 1986, 58, 381–431. [Google Scholar] [CrossRef]
- Sarode, A.P.; Mahajan, O.H. Theoretical Aspects of Photoacoustic Effect with Solids: A Review. Int. J. Sci. Adv. Res. Technol. 2018, 4, 1237–1242. [Google Scholar] [CrossRef]
- Park, H.K.; Grigoropoulos, C.P.; Tam, A.C. Optical measurements of thermal diffusivity of a material. Int. J. Thermophys. 1995, 16, 973–995. [Google Scholar] [CrossRef]
- Vargas, H.; Miranda, L.C.M. Photoacoustic and related photothermal techniques. Phys. Rep. 1988, 161, 43–101. [Google Scholar] [CrossRef]
- Bialkowski, S. Photothermal Spectroscopy Methods for Chemical Analysis; John Wiley: New York, NY, USA, 1996; ISBN 978-1-119-27907-5. [Google Scholar]
- Djordjević, K.L.; Galović, S.P.; Popović, M.N.; Nešić, M.V.; Stanimirović, I.P.; Stanimirović, Z.I.; Markushev, D.D. Use neural network in photoacoustic measurement of thermoelastic properties of aluminum foil. Measurement 2022, 199, 111537. [Google Scholar] [CrossRef]
- Rousset, G.; Lepoutre, F.; Bertrand, L. Influence of thermoelastic bending on photoacoustic experiments related to measurements of thermal diffusivity of metals. J. Appl. Phys. 1983, 54, 2383–2391. [Google Scholar] [CrossRef]
- Djordjević, K.L.; Stoisavljević, Z.Z.; Dragaš, M.A.; Stanimirović, I.; Stanimirović, Z.; Suljovrujic, E.; Galović, S.P. Application of neural network to study of frequency range effect to photoacoustic measurement of thermoelastic properties of thin aluminum samples. Measurement 2024, 236, 115043. [Google Scholar] [CrossRef]
- Todorovic, D.; Nikolic, P. Investigation of carrier transport processes in semiconductors by the photoacoustic frequency transmission method. Opt. Eng. 1997, 36, 432–445. [Google Scholar] [CrossRef]
- Mandelis, A.; Hess, P. Semiconductors and Electronic Materials; SPIE Press: Bellingham, WA, USA, 2000. [Google Scholar]
- Lishchuk, P.; Isaiev, M.; Osminkina, L.; Burbelo, R.; Nychyporuk, T.; Timoshenko, V. Photoacoustic characterization of nanowire arrays formed by metal-assisted chemical etching of crystalline silicon substrates with different doping level. Phys. E Low Dimens. Syst. Nanostruct. 2019, 107, 131–136. [Google Scholar] [CrossRef]
- Astrath, N.G.C.; Astrath, F.B.G.; Shen, J.; Lei, C.; Zhou, J.; Sheng Liu, Z.; Navessin, T.; Baesso, M.L.; Bento, A.C. An open-photoacoustic-cell method for thermal characterization of a two-layer system. J. Appl. Phys. 2010, 107, 043514. [Google Scholar] [CrossRef]
- Dubyk, K.; Nychyporuk, T.; Lysenko, V.; Termentzidis, K.; Castanet, G.; Lemoine, F.; Lacroix, D.; Isaiev, M. Thermal properties study of silicon nanostructures by photoacoustic techniques. J. Appl. Phys. 2020, 127, 225101. [Google Scholar] [CrossRef]
- Strzałkowski, K.; Dadarlat, D.; Streza, M.; Zakrzewski, J. Thermal characterization of ZnBeMnSe mixed compounds by means of photopyroelectric and lock-in thermography methods. Appl. Phys. A 2015, 119, 1165–1171. [Google Scholar] [CrossRef]
- Isaiev, M.; Mussabek, G.; Lishchuk, P.; Dubyk, K.; Zhylkybayeva, N.; Yar-Mukhamedova, G.; Lacroix, D.; Lysenko, V. Application of the Photoacoustic Approach in the Characterization of Nanostructured Materials. Nanomaterials 2022, 12, 708. [Google Scholar] [CrossRef]
- Markushev, D.D.; Ordonez-Miranda, J.; Rabasovic, M.D.; Chirtoc, M.; Todorović, D.M.; Bialkowski, S.E.; Korte, D.; Franko, M. Thermal and elastic characterization of glassy carbon thin films by photoacoustic measurements. Eur. Phys. J. Plus 2017, 132, 33. [Google Scholar] [CrossRef]
- Florian, R.; Pelzl, J.; Rosenberg, M.; Vargas, H.; Wernhardt, R. Photoacoustic Detection of Phase Transitions. Phys. Status Solidi A Appl. Res. 1978, 48, K35–K38. [Google Scholar] [CrossRef]
- Olenka, L.; Nogueiran, E.S.; Medina, A.N.; Baesso, M.L.; Bento, A.C.; Muniz, E.C.; Rubira, A.F. Photoacoustic study of PET films and fibers dyed in supercritical CO2 reactor. Rev. Sci. Instrum. 2003, 74, 328–330. [Google Scholar] [CrossRef]
- Mandelis, A.; Royce, B.S.H. Relaxation time measurements in frequency and time-domain photoacoustic spectroscopy of condensed phases. J. Opt. Soc. Am. 1980, 70, 474–480. [Google Scholar] [CrossRef]
- Djordjevic, K.L.; Milicevic, D.; Galovic, S.P.; Suljovrujic, E.; Jacimovski, S.K.; Furundzic, D.; Popovic, M. Photothermal Response of Polymeric Materials Including Complex Heat Capacity. Int. J. Thermophys. 2022, 43, 131–136. [Google Scholar] [CrossRef]
- Pichardo-Molina, J.L.; Gutiérrez-Juárez, G.; Huerta-Franco, R.; Vargas-Luna, M.; Cholico, P.; Alvarado-Gil, J.J. Open Photoacoustic Cell Technique as a Tool for Thermal and Thermo-Mechanical Characterization of Teeth and Their Restorative Materials. Int. J. Thermophys. 2005, 26, 243–253. [Google Scholar] [CrossRef]
- Dubyk, K.; Borisova, T.; Paliienko, K.; Krisanova, N.; Isaiev, M.; Alekseev, S.; Skryshevsky, V.; Lysenko, V.; Geloen, A. Bio-distribution of Carbon Nanoparticles Studied by Photoacoustic Measurements. Nanoscale Res. Lett. 2022, 17, 127. [Google Scholar] [CrossRef] [PubMed]
- Galovic, S.P.; Djordjevic, K.L.; Nesic, M.V.; Popovic, M.N.; Markushev, D.D.; Markushev, D.K.; Todorovic, D.M. Time-domain minimum-volume cell photoacoustic of thin semiconductor layer—Part I: Theory. J. Appl. Phys. 2023, 133, 245701. [Google Scholar] [CrossRef]
- Telenkov, S.; Mandelis, A. Signal-to-noise analysis of biomedical photoacoustic measurements in time and frequency domains. Rev. Sci. Inst. 2010, 81, 124901. [Google Scholar] [CrossRef]
- Wang, X.; Ku, Y.G.; Xie, X.; Stoica, G.; Wang, L.V. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 2003, 21, 803–806. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wang, L.V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 2006, 77, 041101. [Google Scholar] [CrossRef]
- Li, C.; Wang, L.V. Photoacoustic tomography and sensing in biomedicine. Phys. Med. Biol. 2009, 54, R59–R97. [Google Scholar] [CrossRef]
- Todorovic, D.M.; Nikolic, P.M. A novel design of photoacoustic cells for the investigation of semiconductors. In Proceedings of the International Conference on Microelectronics, Nis, Serbia, 12–14 September 1995. [Google Scholar] [CrossRef]
- Hossain, M.; Chowdhury, M.H. Heat Transfer Simulations on Silicon Thin Film Using Pulsed Laser for Photovoltaics Application. J. Adv. Phys. 2017, 6, 326–333. [Google Scholar] [CrossRef]
- Todorovic, D.M.; Cretin, B.; Song, Y.Q.; Vairac, P. Photothermal elastic vibration method: Investigation of the micro-electro-mechanical-systems. J. Phys. Conf. Ser. 2010, 214, 012105. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, S.; Ding, L.; Liang, X.; Pei, T.; Shen, J.; Peng, L.M. Self-Aligned Ballistic n-Type Single-Walled Carbon Nanotube Field-Effect Transistors with Adjustable Threshold Voltage. Nano Lett. 2008, 8, 3696–3701. [Google Scholar] [CrossRef]
- Ding, L.; Wang, S.; Zhang, Z.; Zeng, Q.; Wang, Z.; Pei, T.; Peng, L.M. Y-Contacted High-Performance n-Type Single-Walled Carbon Nanotube Field-Effect Transistors: Scaling and Comparison with Sc-Contacted Devices. Nano Lett. 2009, 9, 4209–4214. [Google Scholar] [CrossRef]
- Lj Djordjević, K.; Galović, S.P.; Ćojbašić, Ž.M.; Markushev, D.D.; Markushev, D.K.; Aleksić, S.M.; Pantić, D.S. Electronic characterization of plasma-thick n-type silicon using neural networks and photoacoustic response. Opt. Quantum Electron. 2022, 54, 485. [Google Scholar] [CrossRef]
- Nesic, M.V.; Popovic, M.N.; Galovic, S.P.; Djordjevic, K.L.; Jordovic-Pavlovic, M.I.; Miletic, V.V.; Markushev, D.D. Estimation of linear expansion coefficient and thermal diffusivity by photoacoustic numerical self-consistent procedure. J. Appl. Phys. 2022, 131, 105104. [Google Scholar] [CrossRef]
- Nesic, M.; Popovic, M.; Djordjevic, K.; Miletic, V.; Jordovic-Pavlovic, M.; Markushev, D.; Galovic, S. Development and comparison of the techniques for solving the inverse problem in photoacoustic characterization of semiconductors. Opt. Quantum Electron. 2021, 53, 381. [Google Scholar] [CrossRef]
- Šoškić, Z.; Ćirić-Kostić, S.; Galović, S. An extension to the methodology for characterization of thermal properties of thin solid samples by photoacoustic techniques. Int. J. Therm. Sci. 2016, 109, 217–230. [Google Scholar] [CrossRef]
- Herrmann, K.; Pech, N.W.; Retsch, M. Photoacoustic thermal characterization of low thermal diffusivity thin films. Photoacoustics 2021, 22, 100246. [Google Scholar] [CrossRef]
- Bonno, B.; Zeninari, V.; Joly, L.; Parvitte, B. Study of a Thermophysical System with Two Time Constants Using an Open Photoacoustic Cell. Int. J. Thermophys. 2011, 32, 630–640. [Google Scholar] [CrossRef]
- Lashkari, B.; Mandelis, A. Comparison between pulsed laser and frequency-domain photoacoustic modalities: Signal-to-noise ratio, contrast, resolution, and maximum depth detectivity. Rev. Sci. Instrum. 2011, 82, 094903. [Google Scholar] [CrossRef]
- Nikolić, P.M.; Ðurić, S.; Todorović, D.M.; Vasiljević-Radović, D.; Blagojević, V.; Mihajlović, P.; Urošević, D. Application of the photoacoustic method for characterization of natural galena (PbS). Phys. Chem. Miner. 2001, 28, 44–51. [Google Scholar] [CrossRef]
- Djordjevic, K.L.; Markushev, D.D.; Ćojbašić, Ž.M.; Galović, S.P. Photoacoustic measurements of the thermal and elastic properties of n-type silicon using neural networks. Silicon 2020, 12, 1289–1300. [Google Scholar] [CrossRef]
- Djordjevic, K.L.; Markushev, D.D.; Ćojbašić, Ž.M.; Galović, S.P. Inverse problem solving in semiconductor photoacoustics by neural networks. Inverse Probl. Sci. Eng. 2020, 29, 248–262. [Google Scholar] [CrossRef]
- Jordovic-Pavlovic, M.I.; Kupusinac, A.D.; Djordjevic, K.L.; Galovic, S.P.; Markushev, D.D.; Nesic, M.V.; Popovic, M.N. Computationally intelligent description of a photoacoustic detector. Opt. Quantum Electron. 2020, 52, 246. [Google Scholar] [CrossRef]
- Radiša, R.; Dučić, N.; Manasijević, S.; Marković, N.; Ćojbašić, Ž. Casting improvement based on metaheuristic optimization and numerical simulation. Facta Univ. Ser. Mech. Eng. 2017, 15, 397–411. [Google Scholar] [CrossRef]
- Ćojbašić, Ž.M.; Nikolić, V.D.; Ćirić, I.T.; Ćojbašić, L.R. Computationally intelligent modeling and control of fluidized bed combustion process. Therm. Sci. 2011, 15, 321–338. [Google Scholar] [CrossRef]
- Djordjević, K.L.; Jordović-Pavlović, M.I.; Ćojbašić, Ž.M.; Galović, S.P.; Popović, M.N.; Nešić, M.V.; Markushev, D.D. Influence of data scaling and normalization on overall neural network performances in photoacoustics. Opt. Quantum Electron. 2022, 54, 501. [Google Scholar] [CrossRef]
- Bento, A.C.; Mansanares, A.M.; Vargas, H.; Miranda, L.C.M. Photoacoustic Measurements of the Thermal Diffusivity of Anisotropic Samples Using the Phase Lag Method. Phys. Chem. Glas. 1989, 30, 160–162. [Google Scholar]
- Pessoa, O.; Cesar, C.L.; Patel, N.A.; Vargas, H.; Ghizoni, C.C.; Miranda, L.C. Two-beam Photoacoustic Phase Measurement of the Thermal Diffusivity of Solids. J. Appl. Phys. 1986, 59, 1316–1318. [Google Scholar] [CrossRef]
- Cesar, C.L.; Vargas, H.; Miranda, L.C.M. Photoacoustic Microscopy of Layred Samples: Phase Detection Technique. J. Phys. D Appl. Phys. 1985, 18, 599–608. [Google Scholar] [CrossRef]
- Maliński, M. Determination of the thermal diffusivity from the piezoelectric phase spectra. Phys. Status Solidi A 2003, 198, 169–175. [Google Scholar] [CrossRef]
- Chatterjee, A.; Dziczek, D.; Song, P.; Liu, J.; Wieck, A.D.; Pawlak, M. Effect of amplitude measurements on the precision of thermal parameters’ determination in GaAs using frequency-resolved thermoreflectance. J. Appl. Phys. 2024, 135, 225101. [Google Scholar] [CrossRef]
- Todorovic, D.M.; Nikolic, P.M.; Bojicic, A.I.; Radulovic, K.T. Thermoelastic and electronic strain contribution to the frequency transmission photoacoustic effect in semiconductors. Phys. Rev. B 1997, 55, 15631–15642. [Google Scholar] [CrossRef]
- Ivić, Z.; Zeković, S.; Čevizović, D.; Kostić, D. Phonon hardening due to the small-polaron effect. Phys. B Condens. Matter 2005, 355, 417–426. [Google Scholar] [CrossRef]
- Ivić, Z.; Zeković, S.; Čevizović, D.; Kostić, D.; Vujičić, G. Small-polaron resistivity of the narrow band molecular chain: The influence of phonon hardening. Phys. B Condens. Matter 2005, 362, 187–192. [Google Scholar] [CrossRef]
- Čevizović, D.; Ivić, Z.; Galović, S.; Reshetnyak, A.; Chizhov, A. On the vibron nature in the system of two parallel macromolecular chains: The influence of interchain coupling. Phys. B Condens. Matter 2016, 490, 9–15. [Google Scholar] [CrossRef]
- Čevizović, D.; Galović, S.; Zeković, S.; Ivić, Z. Boundary between coherent and noncoherent small polaron motion: Influence of the phonon hardening. Phys. B Condens. Matter 2009, 404, 270–274. [Google Scholar] [CrossRef]
- Chevizovich, D.; Zdravkovic, S. Nonlinear Dynamics of Nanobiophysics, 1st ed.; Springer: New York, NY, USA, 2022; ISBN 978-981-19-5322-4. [Google Scholar]
- Bishop, C.M. Training with noise is equivalent to Tikhonov regularization. Neural Comput. 1995, 7, 108–116. [Google Scholar] [CrossRef]
- Djordjevic, K.L.; Galovic, S.P.; Jordovic-Pavlovic, M.I.; Cojbasic, Z.M.; Markushev, D.D. Improvement of Neural Networks Applied to Photoacoustic Signals of Semiconductors with Added Noise. Silicon 2021, 13, 2959–2969. [Google Scholar] [CrossRef]
- Rifai, S.; Glorot, X.; Bengio, Y.; Vincent, P. Adding noise to the input of a model trained with a regularized objective. arXiv 2011, arXiv:1104.3250. [Google Scholar]
- Zur, R.M.; Jiang, Y.; Pesce, L.L.; Drukker, K. Noise injection for training artificial neural networks: A comparison with weight decay and early stopping. Med. Phys. 2009, 36, 4810–4818. [Google Scholar] [CrossRef]
- Wang, C.; Principe, J.C. Training neural networks with additive noise in the desired signal. IEEE Trans. Neural Netw. 1999, 10, 1511–1517. [Google Scholar] [CrossRef]
- An, G. The effects of adding noise during backpropagation training on a generalization performance. Neural Comput. 1996, 8, 643–674. [Google Scholar] [CrossRef]
NN | Noise | Performance | Epoch |
---|---|---|---|
NN0 | 0 | 0.0000017246 | 1000 |
NN1 | 1% | 0.015800 | 44 |
NN2 | 2% | 0.037952 | 9 |
NN3 | 3% | 0.052391 | 8 |
NN4 | 4% | 0.072174 | 6 |
NN5 | 5% | 0.070721 | 5 |
I Test | Max % Error | Average % Error | ||||
---|---|---|---|---|---|---|
0 | 0.0273 | 0.0542 | 0.0488 | 0.0040 | 0.0137 | 0.0041 |
1% | 4.9486 | 4.0797 | 2.6102 | 0.6748 | 0.7016 | 0.3984 |
2% | 10.7968 | 7.8927 | 6.0712 | 2.0360 | 2.3332 | 1.0478 |
3% | 11.8123 | 7.9326 | 5.3684 | 2.7558 | 2.8824 | 1.2435 |
4% | 10.3026 | 7.8952 | 7.6432 | 3.0014 | 2.9103 | 2.5467 |
5% | 10.8236 | 8.5714 | 7.6446 | 3.4590 | 3.1694 | 1.8964 |
II Test | Max % Error | Average % Error | ||||
---|---|---|---|---|---|---|
0 | 31.6433 | 15.3729 | 16.3180 | 2.3443 | 1.3165 | 1.1680 |
1% | 6.4489 | 2.6458 | 5.2358 | 1.0022 | 0.7648 | 0.5999 |
2% | 14.2476 | 4.7840 | 13.8016 | 1.7041 | 1.6064 | 1.2381 |
3% | 6.7114 | 6.9429 | 5.4485 | 1.8062 | 2.3598 | 1.0484 |
4% | 7.0108 | 7.8894 | 4.3250 | 2.2337 | 2.4526 | 2.0073 |
5% | 8.3557 | 8.6263 | 6.7657 | 2.6509 | 2.6872 | 1.3180 |
PNN | Sample No. 1 | Sample No. 2 | Sample No. 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Parameters | |||||||||
Unit | 10−5 m2s−1 | 10−6 K−1 | 102 μm | 10−5 m2s−1 | 10−6 K−1 | 102 μm | 10−5 m2s−1 | 10−6 K−1 | 102 μm |
0% | 9.0011 | 2.6003 | 8.2997 | 8.9958 | 2.6020 | 4.1689 | 11.7889 | 2.2092 | 1.4795 |
Rel % error | 0.0127 | 0.0135 | 0.0030 | 0.0464 | 0.0785 | 0.0265 | 30.9883 | 15.0313 | 15.5833 |
1% | 9.0131 | 2.5980 | 8.3060 | 9.0610 | 2.5849 | 4.1845 | 9.8674 | 2.5442 | 1.3610 |
Rel % error | 0.1457 | 0.0777 | 0.0761 | 0.6780 | 0.5819 | 0.3777 | 9.6194 | 2.1460 | 6.3307 |
2% | 9.0009 | 2.5875 | 8.2861 | 9.0930 | 2.6061 | 4.1931 | 10.2581 | 2.5214 | 1.4117 |
Rel % error | 0.0099 | 0.4800 | 0.1666 | 1.0341 | 0.2357 | 0.5538 | 13.9786 | 3.0199 | 10.2928 |
3%RGN | 9.0196 | 2.5876 | 8.3133 | 9.0642 | 2.6045 | 4.1918 | 9.0941 | 2.6609 | 1.3422 |
Rel % error | 0.2183 | 0.4766 | 0.0394 | 0.7130 | 0.1749 | 0.5226 | 1.0450 | 2.3427 | 4.8579 |
4% | 8.9949 | 2.58092 | 8.1578 | 8.9099 | 2.6194 | 3.9900 | 8.8366 | 2.6089 | 1.2998 |
Rel % error | 0.0569 | 0.7338 | 1.7136 | 1.0010 | 0.7477 | 4.3163 | 1.8158 | 0.3425 | 1.5488 |
5% | 9.0141 | 2.5802 | 8.3038 | 8.9779 | 2.5904 | 4.1616 | 8.8399 | 2.6157 | 1.2026 |
Rel % error | 0.1566 | 0.7605 | 0.0460 | 0.2459 | 0.3692 | 0.2023 | 1.7782 | 0.6030 | 6.0439 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragas, M.; Galovic, S.; Milicevic, D.; Suljovrujic, E.; Djordjevic, K. Solution of Inverse Photoacoustic Problem for Semiconductors via Phase Neural Network. Mathematics 2024, 12, 2858. https://doi.org/10.3390/math12182858
Dragas M, Galovic S, Milicevic D, Suljovrujic E, Djordjevic K. Solution of Inverse Photoacoustic Problem for Semiconductors via Phase Neural Network. Mathematics. 2024; 12(18):2858. https://doi.org/10.3390/math12182858
Chicago/Turabian StyleDragas, Milica, Slobodanka Galovic, Dejan Milicevic, Edin Suljovrujic, and Katarina Djordjevic. 2024. "Solution of Inverse Photoacoustic Problem for Semiconductors via Phase Neural Network" Mathematics 12, no. 18: 2858. https://doi.org/10.3390/math12182858
APA StyleDragas, M., Galovic, S., Milicevic, D., Suljovrujic, E., & Djordjevic, K. (2024). Solution of Inverse Photoacoustic Problem for Semiconductors via Phase Neural Network. Mathematics, 12(18), 2858. https://doi.org/10.3390/math12182858