The Degree Energy of a Graph
Abstract
:1. Introduction
- Notations:
- ,
- is the total number of neighbouring vertex pairs with the same degree.
- ,
- is the total number of neighbouring vertex pairs with different degrees.
- ,
- is the total number of non-neighboring vertex pairs with identical degrees.
2. Main Results
2.1. Basic Properties on Degree Spectra and Degree Energy of a Graph
2.2. Degree Spectra and Degree Energy of a Graph
2.3. Degree Spectra and Degree Energy of Complement of a Graph
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, Y.Z.; Yu, G.D.; Wang, Y. The chromatic number and the least eigenvalue of a graph. Electron. J. Combin. 2012, 19, 39. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.; Lu, M.; Tian, F. On the spectral radius of graphs. Linear Algebra Appl. 2004, 387, 41–49. [Google Scholar] [CrossRef]
- Li, X.; Shi, Y.; Gutman, I. Graph Energy; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Adiga, C.; Bayad, A.; Gutman, I.; Shrikanth, A.S. The minimum covering energy of a graph. Kragujev. J. Sci. 2012, 34, 39–56. [Google Scholar]
- Adiga, C.; Sampathkumar, E.; Sriraj, M.A.; Shrikanth, A.S. Color energy of a graph. Proc. Jangjeon Math. Soc. 2013, 16, 335–351. [Google Scholar]
- Adiga, C.; Balakrishnan, R.; So, W. The Skew Energy of a Digraph. Linear Algebra Appl. 2010, 432, 1825–1835. [Google Scholar] [CrossRef]
- Aouchiche, M.; Hansen, P. Distance spectra of graphs: A survey. Linear Algebra Appl. 2014, 458, 301–386. [Google Scholar] [CrossRef]
- Bozkurt, S.B.; Gungor, A.D.; Gutman, I.; Cevik, A.S. Randic matrix and Randic energy. MATCH Commum. Math. Comput. Chem. 2010, 64, 239–250. [Google Scholar]
- Jog, S.R.; Hande, S.P.; Revankar, D.S. Degree sum polynomial of graph valued functions on regular graphs. Int. J. Graph Theory 2013, 1, 108–115. [Google Scholar]
- Mohar, B.; Alavi, Y.; Chartrand, G.; Oellermann, O. The laplacian spectrum of graphs. Graph Theory Comb. Appl. 1991, 12, 871–898. [Google Scholar]
- Akbari, S.; Ghorbani, E.; Oboudi, M.R. Edge addition, singular values, and energy of graphs and matrices. Linear Algebra Appl. 2009, 430, 2192–2199. [Google Scholar] [CrossRef]
- Alinaghipour, F.; Ahmadi, B. On the energy of complement of regular line graph. MATCH Commun. Math. Comput. Chem. 2008, 60, 427–434. [Google Scholar]
- Gutman, I. On graphs whose energy exceeds the number of vertices. Linear Algebra Appl. 2008, 429, 2670–2677. [Google Scholar] [CrossRef]
- Dehmer, M.; Emmert-Streib, F. Analysis of Complex Networks: From Biology to Linguistics; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Gutman, I.; Polansky, O.E. Mathematical Concepts in Organic Chemistry; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- McClelland, B.J. Properties of the latent roots of a matrix: The estimation of π-electron energies. J. Chem. Phys. 1971, 54, 640–643. [Google Scholar] [CrossRef]
- Hosamani, S.M.; Ramane, H.S. On degree sum energy of a graph. Eur. J. Pure Appl. Math. 2016, 9, 340–345. [Google Scholar]
- Gutman, I. The energy of a graph. Ber. Math. Statist. Sekt. Forchungsz. Graz 1978, 103, 1–22. [Google Scholar]
- Pirzada, S.; Gutman, I. Energy of a graph is never the square root of an odd integer. Appl. Anal. Discret. Math. 2008, 2, 118–121. [Google Scholar] [CrossRef]
- Wilson, R.J. Introduction to Graph Theory; Pearson Education India: New Delhi, India, 1979. [Google Scholar]
- Zhang, X.; Bilal, A.; Munir, M.M.; Rehman, H.M.U. Maximum degree and minimum degree spectral radii of some graph operations. Math. Biosci. Eng. 2022, 19, 10108–10121. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Kosari, S.; Talebi, A.A.; Sadati, S.H.; Rashmanlou, H. Investigation of the Main Energies of Picture Fuzzy Graph and its Applications. Int. J. Comput. Intell. Syst. 2022, 15, 31. [Google Scholar] [CrossRef]
- Balakrishnan, R.; Ranganathan, K. A Textbook of Graph Theory; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Bapat, R.; Pati, S. Energy of a graph is never an odd integer. Bull. Kerala Math. Assoc. 2004, 1, 129–132. [Google Scholar]
- Doob, M.; Sachs, H. Spectra of Graphs: Theory and Application; Deutscher Verlag der Wissenschaften: Berlin, Germany, 1980. [Google Scholar]
- Godsil, C.; Royle, G.F. Algebraic Graph Theory; Springer Science & Business Media: New York, NY, USA, 2001. [Google Scholar]
- Biggs, N. Algebraic Graph Theory; Cambridge University Press: Cambridge, UK, 1974. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagalakshmi, A.R.; Shrikanth, A.S.; Kalavathi, G.K.; Sreekeshava, K.S. The Degree Energy of a Graph. Mathematics 2024, 12, 2699. https://doi.org/10.3390/math12172699
Nagalakshmi AR, Shrikanth AS, Kalavathi GK, Sreekeshava KS. The Degree Energy of a Graph. Mathematics. 2024; 12(17):2699. https://doi.org/10.3390/math12172699
Chicago/Turabian StyleNagalakshmi, A. R., A. S. Shrikanth, G. K. Kalavathi, and K. S. Sreekeshava. 2024. "The Degree Energy of a Graph" Mathematics 12, no. 17: 2699. https://doi.org/10.3390/math12172699
APA StyleNagalakshmi, A. R., Shrikanth, A. S., Kalavathi, G. K., & Sreekeshava, K. S. (2024). The Degree Energy of a Graph. Mathematics, 12(17), 2699. https://doi.org/10.3390/math12172699