On General Alternating Tornheim-Type Double Series
Abstract
:1. Introduction
2. Algebraic Settings and Integrals Associated with 3-Posets
3. The Formulas for Alternating Mordell–Tornheim Series
4. The Decomposition Relation of the -Series
5. The First Ten -Series
6. The Following Eight -Series
7. The Expressions of -Series
8. Examples and Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
References
- Borwein, D.; Borwein, J.; Bradley, D. Parametric Euler sum identities. J. Math. Anal. Appl. 2006, 316, 328–338. [Google Scholar] [CrossRef]
- Zhao, J. On a conjecture of Borwein, Bradley and Broadhurst. J. Reine Angew. Math. 2010, 639, 223–233. [Google Scholar] [CrossRef]
- Xu, C. Explicit formulas of some mixed Euler sums via alternating multiple zeta values. Bull. Malays. Math. Sci. Soc. 2020, 43, 3809–3827. [Google Scholar] [CrossRef]
- Hoffman, M.E. Multiple harmonic series. Pac. J. Math. 1992, 152, 275–290. [Google Scholar] [CrossRef]
- Eie, M. The Theory of Multiple Zeta Values with Applications in Combinatorics; Monographs in Number Theory; World Scientific: Singapore, 2013; Volume 7. [Google Scholar]
- Sitaramachandra Rao, R. A formula of S. Ramanujan. J. Number Theory 1987, 25, 1–19. [Google Scholar] [CrossRef]
- Flajolet, P.; Salvy, B. Euler sums and contour integral representations. Exp. Math. 1998, 7, 15–35. [Google Scholar] [CrossRef]
- Vermaseren, J.A.M. Harmonic sums, Mellin transforms and integrals. Int. J. Mod. Phys. 1999, 14, 2037–2076. [Google Scholar] [CrossRef]
- Powers, B.R. N-Player final-offer arbitration: Harmonic numbers in equilibrium. Am. Math. Mon. 2023, 130, 559–576. [Google Scholar] [CrossRef]
- Harris, P.E.; Kretschmann, J.; Mori, J.C.M. Lucky cars and the quicksort algorithm. Am. Math. Mon. 2024, 131, 417–423. [Google Scholar] [CrossRef]
- Blümlein, J.; Kurth, S. Harmonic sums and Mellin transforms up to two loop order. Phys. Rev. D 1999, 60, 014018. [Google Scholar] [CrossRef]
- Campbell, J.M.; Chen, K.-W. Explicit identities for infinite families of series involving squared binomial coefficients. J. Math. Anal. Appl. 2022, 513, 126219. [Google Scholar] [CrossRef]
- Chen, K.-W. Generalized harmonic number sums and quasisymmetric functions. Rocky Mt. J. Math. 2020, 50, 1253–1275. [Google Scholar] [CrossRef]
- Chen, K.-W.; Chen, Y.-H. Infinite series containing generalized harmonic functions. Notes Number Theory Discret. Math. 2020, 26, 85–104. [Google Scholar] [CrossRef]
- Chen, K.-W.; Yang, F.-Y. Infinite series involving harmonic numbers and reciprocal of binomial coefficients. AIMS Math. 2024, 9, 16885–16900. [Google Scholar] [CrossRef]
- Sofo, A.; Nimbran, A.S. Euler sums and integral connections. Mathematics 2019, 7, 833. [Google Scholar] [CrossRef]
- Tornheim, L. Harmonic double series. Am. J. Math. 1950, 72, 303–314. [Google Scholar] [CrossRef]
- Mordell, L.J. On the evaluation of some multiple series. J. Lond. Math. Soc. 1958, 33, 368–371. [Google Scholar] [CrossRef]
- Witten, E. On quantum gauge theories in two dimensions. Commun. Math. Phys. 1991, 141, 153–209. [Google Scholar] [CrossRef]
- Bradley, D.M.; Zhou, X. On Mordell-Tornheim sums and multiple zeta values. Ann. Sci. Math. 2010, 34, 15–23. [Google Scholar]
- Chen, K.-W. On some general Tornheim type series. Mathematics 2024, 12, 1867. [Google Scholar] [CrossRef]
- Subbarao, M.V.; Sitaramachandra Rao, R. On some infinite series of L. J. Mordell and their analogues. Pac. J. Math. 1985, 119, 245–255. [Google Scholar] [CrossRef]
- Tsumura, H. On some combinatorial relations for Tornheim’s double series. Acta Arith. 2002, 105, 239–252. [Google Scholar] [CrossRef]
- Tsumura, H. On alternating analogues of Tornheim’s double series. Proc. Am. Math. Soc. 2003, 131, 3633–3641. [Google Scholar] [CrossRef]
- Tsumura, H. Evaluation formulas for Tornheim’s type of alternating double series. Math. Comput. 2004, 73, 251–258. [Google Scholar] [CrossRef]
- Tsumura, H. On alternating analogues of Tornheim’s double series II. Ramanujan J. 2009, 19, 81–90. [Google Scholar] [CrossRef]
- Zhao, J. A note on colored Tornheim’s double series. Integers 2010, 10, 879–882. [Google Scholar] [CrossRef]
- Kuba, M. On evaluations of infinite double sums and Tornheim’s double series. Sém. Lothar. Combin. 2008, 58, 11. [Google Scholar]
- Chen, K.-W. Sum relations from shuffle products of alternating multiple zeta values. Mediterr. J. Math. 2022, 19, 206. [Google Scholar] [CrossRef]
- Hoffman, M.E. The algebra of multiple harmonic series. J. Algebra 1997, 194, 477–495. [Google Scholar] [CrossRef]
- Minh, H.N.; Petitot, M. Lyndon words, polylogarithms and the Riemann ζ function. Discret. Math. 2000, 217, 273–292. [Google Scholar] [CrossRef]
- Li, Z.; Qin, C. Shuffle product formulas of multiple zeta values. J. Number Theory 2017, 171, 79–111. [Google Scholar] [CrossRef]
- Bigotte, M.; Jacob, G.; Oussous, N.E.; Petitot, M. Lyndon words and shuffle algebras for generating the coloured multiple zeta values relations tables. Theor. Comput. Sci. 2002, 273, 271–282. [Google Scholar] [CrossRef]
- Ihara, K.; Kaneko, M.; Zagier, D. Derivation and double shuffle relations for multiple zeta values. Compos. Math. 2006, 142, 307–338. [Google Scholar] [CrossRef]
- Yamamoto, S. Multiple zeta-star values and multiple integrals. RIMS Kôkyûroku Bessatsu 2017, 68, 3–14. [Google Scholar]
- Yamamoto, S. Integrals associated with 2-posets and applications to multiple zeta values. RIMS Kôkyûroku Bessatsu 2020, 83, 27–46. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.-W. On General Alternating Tornheim-Type Double Series. Mathematics 2024, 12, 2621. https://doi.org/10.3390/math12172621
Chen K-W. On General Alternating Tornheim-Type Double Series. Mathematics. 2024; 12(17):2621. https://doi.org/10.3390/math12172621
Chicago/Turabian StyleChen, Kwang-Wu. 2024. "On General Alternating Tornheim-Type Double Series" Mathematics 12, no. 17: 2621. https://doi.org/10.3390/math12172621
APA StyleChen, K.-W. (2024). On General Alternating Tornheim-Type Double Series. Mathematics, 12(17), 2621. https://doi.org/10.3390/math12172621