Single-Machine Scheduling with Simultaneous Learning Effects and Delivery Times
Abstract
:1. Introduction
2. Related Work
3. Problem Statement
4. Lower Bounds
4.1. Optimal Properties
4.2. Criterion
4.3. Criterion
5. Upper Bounds
5.1. Criterion
Algorithm 1: Upper Bound for |
Step 1. Obtain the sequence by non-decreasing of (); Step 2. Obtain the sequence by non-increasing of (); Step 3. Obtain the sequence by non-decreasing of (); Step 4. From Steps 1–3, calculate and select the smallest object function value as the initial sequence ; Step 5. Set . Select the first two jobs from , and select the better one of the two possible sequences; Step 6. Set . Insert the sth job in sequence into s possible positions to obtain the best partial sequence. Next, determine all possible sequences by interchanging jobs in positions k and j of the above partial sequence for (). Select the best partial sequence that has the minimum value ; Step 7. If , then Stop; otherwise, return to Step 6. |
5.2. Criterion
Algorithm 2: Upper Bound for |
Step 1. Obtain the sequence by non-decreasing of (); Step 2. Obtain the sequence by non-decreasing of (); Step 3. From Steps 1–2, calculate and select the smallest object function value as the initial sequence ; Step 4. Set . Select the first two jobs from , and select the better one of the two possible sequences; Step 5. Set . Insert the sth job in sequence into s possible positions to obtain the best partial sequence. Next, determine all possible sequences by interchanging jobs in positions k and j of the above partial sequence for (). Select the best partial sequence that has the minimum value ; Step 6. If , then Stop; otherwise, return to Step 5. |
5.3. Branch-and-Bound Algorithm
Algorithm 3: Branch-and-Bound |
Step 1. (Upper bound) Calculate the initial sequence with the upper bound by Algorithm 1 for (Algorithm 2 for ); Step 2. (Bounding) Calculate the lower bounds , (see Equations (7) and (10)) for the node. If the lower bound of a node exceeds the calculated upper bound, all subsequent nodes including it are deleted. Otherwise, replace it as the new solution; Step 3. (Termination) Continue until all nodes have been explored. |
6. Other Heuristic Algorithms
6.1. Tabu Search
Algorithm 4: Tabu Search |
Step 1. Let the tabu list be empty and the iteration number be 0; Step 2. Let the sequence obtained from Algorithm 1 for (Algorithm 2 for ) be the initial sequence that records the value of the objective function (). Set the current schedule as the best solution (); Step 3. Search the associated neighborhood of the current schedule and resolve if there is a schedule () with the smallest objective function value in associated neighborhoods and if it is not in the tabu list; Step 4. If () is better than (), set (). Update the tabu list and the number of iterations; Step 5. If there is not a schedule in associated neighborhoods and it is not in the tabu list or if the maximum number of iterations is reached, then output the local optimal sequence () and the corresponding function value. Otherwise, update the tabu list and turn to Step 3. |
6.2. Simulated Annealing
Algorithm 5: Simulated Annealing |
Step 1. The initial sequence can be calculated by Algorithm 1 for (Algorithm 2 for ); Step 2. Use the pairwise exchange neighborhood generation method to obtain other solutions; Step 3. (Acceptance probability) If the objective function value of the new schedule is smaller than that of the original schedule, it is automatically accepted. However, if the new schedule objective value is larger, it may still be accepted with a decreasing probability as the process progresses. The acceptance probability is determined by the following exponential distribution function: Step 4. (Stopping condition) Our preliminary trials indicated that the quality of the sequence is stable after 300n iterations (see Wu et al. [37]). |
7. Computational Experiments
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, C.-C.; Yin, Y.; Cheng, S.-R. Single-machine and two-machine flowshop scheduling problems with truncated position-based learning functions. J. Oper. Res. Soc. 2013, 64, 147–156. [Google Scholar] [CrossRef]
- Azzouz, A.; Ennigrou, M.; Said, L.B. Scheduling problems under learning effects: Classification and cartography. Int. J. Prod. Res. 2018, 56, 1642–1661. [Google Scholar] [CrossRef]
- Sun, X.Y.; Geng, X.-N.; Liu, F. Flow shop scheduling with general position weighted learning effects to minimise total weighted completion time. J. Oper. Res. Soc. 2021, 72, 2674–2689. [Google Scholar] [CrossRef]
- Lv, D.-Y.; Wang, J.-B. Study on resource-dependent no-wait flow shop scheduling with different due-window assignment and learning effects. Asia-Pac. J. Oper. Res. 2021, 38, 2150008. [Google Scholar] [CrossRef]
- Zhao, S. Scheduling jobs with general truncated learning effects including proportional setup times. Comput. Appl. Math. 2022, 41, 146. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Wang, J.-B. Study on convex resource allocation scheduling with a time-dependent learning effect. Mathematics 2023, 11, 3179. [Google Scholar] [CrossRef]
- Paredes-Astudillo, Y.A.; Botta-Genoulaz, V.; MontoyaTorres, J.R. Impact of learning effect modelling in flowshop scheduling with makespan minimisation based on the Nawaz-Enscore-Ham algorithm. Int. J. Prod. Res. 2024, 62, 1999–2014. [Google Scholar] [CrossRef]
- Ma, S.; Guo, S.; Zhang, X. An optimal online algorithm for single-processor scheduling problem with learning effect. Theor. Comput. Sci. 2022, 928, 1–12. [Google Scholar] [CrossRef]
- Mor, B.; Mosheiov, G.; Shapira, D. Flowshop scheduling with learning effect and job rejection. J. Sched. 2020, 23, 631–641. [Google Scholar] [CrossRef]
- Chen, K.; Han, S.Q.; Huang, H.L.; Ji, M. A group-dependent due window assignment scheduling problem with controllable learning effect. Asia-Pac. J. Oper. Res. 2023, 40, 2250025. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, X.-Y.; Liu, T.; Wang, J.Y.; Geng, X.-N. Single-machine scheduling simultaneous consideration of resource allocations and exponential time-dependent learning effects. J. Oper. Res. Soc. 2024. [Google Scholar] [CrossRef]
- Lv, D.-Y.; Wang, J.-B. Research on two-machine flow shop scheduling problem with release dates and truncated learning effects. Eng. Optim. 2024. [Google Scholar] [CrossRef]
- Lin, S.S. Due-window assignment scheduling with learning and deterioration effects. J. Ind. Manag. Optim. 2022, 18, 2567–2578. [Google Scholar] [CrossRef]
- Zhu, Z.G.; Chu, F.; Yu, Y.G.; Sun, L.Y. Single-machine past-sequence-dependent setup times scheduling with resource allocation and learning effect. RAIRO Oper. Res. 2016, 50, 733–748. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Zhang, Z.; Gong, X.; Yin, Y. An exact solution method for solving seru scheduling problems with past-sequence-dependent setup time and learning effect. Comput. Ind. Eng. 2021, 158, 107354. [Google Scholar] [CrossRef]
- Wang, J.-B.; Lv, D.-Y.; Wan, C. Proportionate flow shop scheduling with job-dependent due windows and position-dependent weights. Asia-Pac. J. Oper. Res. 2024, 2450011. [Google Scholar] [CrossRef]
- Wu, W.; Lv, D.-Y.; Wang, J.-B. Two due-date assignment scheduling with location-dependent weights and a deteriorating maintenance activity. Systems 2023, 11, 150. [Google Scholar] [CrossRef]
- Wang, J.-B.; Cui, B.; Ji, P.; Liu, W.W. Research on single-machine scheduling with position-dependent weights and past-sequence-dependent delivery times. J. Comb. Optim. 2021, 41, 290–303. [Google Scholar] [CrossRef]
- Ji, M.; Yao, D.L.; Ge, J.J.; Cheng, T.C.E. Single-machine slack due-window assignment and scheduling with past-sequence-dependent delivery times and controllable job processing times. Eur. J. Ind. Eng. 2015, 9, 794–818. [Google Scholar] [CrossRef]
- Ahmadizar, F.; Farhadi, S. Single-machine batch delivery scheduling with job release dates, due windows and earliness, tardiness, holding and delivery costs. Comput. Oper. Res. 2015, 53, 194–205. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.T.; Cao, J.H.; Yang, Z.; Coelho, L.C. Exact and matheuristic methods for the parallel machine scheduling and location problem with delivery time and due date. Comput. Oper. Res. 2022, 147, 105936. [Google Scholar] [CrossRef]
- Pan, L.; Sun, X.; Wang, J.-B.; Zhang, L.H.; Lv, D.-Y. Due date assignment single-machine scheduling with delivery times, position-dependent weights and deteriorating jobs. J. Comb. Optim. 2023, 45, 100. [Google Scholar] [CrossRef]
- Qian, J.; Han, H. The due date assignment scheduling problem with the deteriorating jobs and delivery time. J. Appl. Math. Comput. 2021, 68, 1–14. [Google Scholar] [CrossRef]
- Mao, R.-R.; Wang, Y.-C.; Lv, D.-Y.; Wang, J.-B.; Lu, Y.-Y. Delivery times scheduling with deterioration effects in due window assignment environments. Mathematics 2023, 11, 3983. [Google Scholar] [CrossRef]
- Mao, R.-R.; Lv, D.-Y.; Ren, N.; Wang, J.-B. Supply chain scheduling with deteriorating jobs and delivery times. J. Appl. Math. Comput. 2024, 70, 2285–2312. [Google Scholar] [CrossRef]
- Zhao, T.; Lu, S.J.; Cheng, H.; Ren, M.Y.; Liu, X.B. Coordinated production and delivery scheduling for service-oriented manufacturing systems with deterioration effect. Int. J. Prod. Res. 2023. [Google Scholar] [CrossRef]
- Lu, Y.-Y.; Zhang, S.; Tao, J.-Y. Earliness-tardiness scheduling with delivery times and deteriorating jobs. Asia-Pac. J. Oper. Res. 2024, 2450009. [Google Scholar] [CrossRef]
- Ren, N.; Lv, D.-Y.; Wang, J.-B.; Wang, X.-Y. Solution algorithms for single-machine scheduling with learning effects and exponential past-sequence-dependent delivery times. J. Ind. Manag. Optim. 2023, 19, 8429–8450. [Google Scholar] [CrossRef]
- Wang, S.-H.; Lv, D.-Y.; Wang, J.-B. Research on position-dependent weights scheduling with delivery times and truncated sum-of-processing-times-based learning effect. J. Ind. Manag. Optim. 2023, 19, 2824–2837. [Google Scholar] [CrossRef]
- Qian, J.; Chang, G.; Zhang, X. Single-machine common due-window assignment and scheduling with position-dependent weights, delivery time, learning effect and resource allocations. J. Appl. Math. Comput. 2024, 70, 1965–1994. [Google Scholar] [CrossRef]
- Toksari, M.D.; Aydogan, E.K.; Atalay, B.; Sari, S. Some scheduling problems with sum of logarithm processing times based learning effect and exponential past sequence dependent delivery times. J. Ind. Manag. Optim. 2022, 18, 1795–1807. [Google Scholar] [CrossRef]
- Wang, X.Y.; Liu, W.; Li, L.; Zhao, P.Z.; Zhang, R.F. Resource dependent scheduling with truncated learning effects. Math. Biosci. Eng. 2022, 19, 5957–5967. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-H.; Lv, D.-Y.; Zhang, L.-H.; Wang, J.-B. Permutation flow shop scheduling with makespan objective and truncated learning effects. J. Appl. Math. Comput. 2024, 70, 2907–2939. [Google Scholar] [CrossRef]
- Ren, N.; Wang, J.-B.; Wang, E.S. Research on delivery times with truncated learning effects. Comput. Appl. Math. 2023, 42, 243. [Google Scholar] [CrossRef]
- Wang, S.Z.; Zhang, X.G. The supply chain scheduling problem based on truncated learning effect and time dependence. J. Southwest Univ. 2020, 42, 44–50. (In Chinese) [Google Scholar]
- Koulamas, C.; Kyparisis, G.J. Single-machine scheduling problems with past-sequence-dependent delivery times. Int. J. Prod. Econ. 2010, 126, 264–266. [Google Scholar] [CrossRef]
- Wu, C.-C.; Wu, W.-H.; Wu, W.-H.; Hsu, P.-H.; Yin, Y.; Xu, J.-A. single-machine scheduling with a truncated linear deterioration and ready times. Inform. Sci. 2014, 256, 109–125. [Google Scholar] [CrossRef]
- Lv, Z.-G.; Zhang, L.-H.; Wang, X.-Y.; Wang, J.-B. Single machine scheduling proportionally deteriorating jobs with ready times subject to the total weighted completion time minimization. Mathematics 2024, 12, 610. [Google Scholar] [CrossRef]
- Rossit, D.A.; Tohmé, F.; Frutos, M. The non-permutation flow-shop scheduling problem: A literature review. Omega 2018, 77, 143–153. [Google Scholar] [CrossRef]
- Panwalkar, S.S.; Koulamas, C. Analysis of flow shop scheduling anomalies. Eur. J. Oper. Res. 2020, 280, 25–33. [Google Scholar] [CrossRef]
- Koulamas, C.; Kyparisis, G.J. Flow shop scheduling with two distinct job due dates. Comput. Indus. Eng. 2022, 163, 107835. [Google Scholar] [CrossRef]
- Khatami, M.; Salehipour, A.; Cheng, T.C.E. Flow-shop scheduling with exact delays to minimize makespan. Comput. Indus. Eng. 2023, 183, 109456. [Google Scholar] [CrossRef]
- Lv, D.-Y.; Wang, J.-B. No-idle flow shop scheduling with deteriorating jobs and common due date under dominating machines. Asia-Pac. J. Oper. Res. 2024, 2450003. [Google Scholar] [CrossRef]
- Huang, X. Bicriterion scheduling with group technology and deterioration effect. J. Appl. Math. Comput. 2019, 60, 455–464. [Google Scholar] [CrossRef]
- Liu, F.; Yang, J.; Lu, Y.-Y. Solution algorithms for single-machine group scheduling with ready times and deteriorating jobs. Eng. Optim. 2019, 51, 862–874. [Google Scholar] [CrossRef]
- Sun, X.Y.; Liu, T.; Geng, X.-N.; Hu, Y.; Xu, J.-X. Optimization of scheduling problems with deterioration effects and an optional maintenance activity. J. Sched. 2023, 26, 251–266. [Google Scholar] [CrossRef]
Serial Number | Parameter | Value |
---|---|---|
1 | −0.05, −0.15, −0.25, −0.35, −0.45 | |
2 | ||
3 | ||
4 | , | |
5 | , | |
6 |
CPU | CPU | CPU | CPU | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max | ||
10 | −0.05 | 619.20 | 1861.00 | 2.20 | 4.00 | 6046.00 | 6469.00 | 28.90 | 34.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
−0.15 | 263.90 | 521.00 | 2.30 | 4.00 | 6194.00 | 6497.00 | 29.20 | 34.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.25 | 753.70 | 2113.00 | 2.20 | 4.00 | 6506.40 | 7065.00 | 30.00 | 34.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.35 | 536.90 | 1248.00 | 2.40 | 3.00 | 6401.50 | 6601.00 | 30.10 | 36.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.45 | 522.80 | 2327.00 | 2.30 | 3.00 | 6211.90 | 6599.00 | 30.00 | 36.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
11 | −0.05 | 2529.40 | 5997.00 | 3.00 | 4.00 | 10,315.50 | 10,639.00 | 35.00 | 42.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
−0.15 | 4240.50 | 10,626.00 | 2.60 | 4.00 | 9490.30 | 9616.00 | 33.10 | 36.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.25 | 2350.10 | 7252.00 | 2.60 | 3.00 | 9533.70 | 9655.00 | 34.10 | 41.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.35 | 2862.90 | 6677.00 | 2.50 | 3.00 | 9494.90 | 9608.00 | 33.00 | 38.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.45 | 2840.10 | 6384.00 | 2.50 | 3.00 | 9554.90 | 9781.00 | 34.80 | 39.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
12 | −0.05 | 11,829.70 | 34,021.00 | 3.00 | 4.00 | 13,648.40 | 13,981.00 | 38.50 | 43.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
−0.15 | 20,299.50 | 51,703.00 | 3.20 | 4.00 | 13,871.60 | 14,202.00 | 38.10 | 43.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.25 | 35,064.80 | 72,411.00 | 3.20 | 5.00 | 13,926.70 | 14,377.00 | 40.60 | 47.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.35 | 17,803.20 | 37,647.00 | 3.30 | 4.00 | 14,608.00 | 14,781.00 | 38.90 | 42.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.45 | 22,831.10 | 80,466.00 | 3.10 | 4.00 | 14,471.10 | 15,071.00 | 38.30 | 41.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
13 | −0.05 | 265,656.90 | 923,120.00 | 3.50 | 4.00 | 20,448.90 | 20,785.00 | 46.90 | 61.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
−0.15 | 249,231.90 | 1,473,884.00 | 3.40 | 4.00 | 20,387.90 | 21,140.00 | 44.00 | 55.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.25 | 112,572.70 | 302,798.00 | 3.20 | 5.00 | 19,454.30 | 20,821.00 | 42.90 | 53.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.35 | 268,053.80 | 946,366.00 | 3.00 | 4.00 | 18,161.90 | 19,484.00 | 40.60 | 43.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.45 | 160,286.90 | 745,930.00 | 3.20 | 4.00 | 20,307.30 | 20,550.00 | 46.10 | 52.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
14 | −0.05 | 1,172,122.50 | 7,567,940.00 | 3.90 | 5.00 | 28,585.20 | 30,211.00 | 48.50 | 54.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
−0.15 | 1,424,138.70 | 4,481,564.00 | 4.00 | 5.00 | 28,565.70 | 29,477.00 | 64.10 | 70.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.25 | 929,375.40 | 2,344,144.00 | 3.70 | 4.00 | 28,179.60 | 28,865.00 | 49.60 | 53.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.35 | 833,666.90 | 1,431,689.00 | 3.80 | 5.00 | 26,882.00 | 28,400.00 | 47.00 | 51.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.45 | 736,525.30 | 1,193,341.00 | 3.90 | 5.00 | 27,906.00 | 29,114.00 | 48.50 | 54.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
CPU | CPU | CPU | CPU | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max | ||
10 | −0.05 | 841.80 | 1846.00 | 2.50 | 3.00 | 6338.80 | 6439.00 | 29.50 | 32.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
−0.15 | 349.40 | 1058.00 | 2.30 | 3.00 | 6381.50 | 6447.00 | 29.00 | 31.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.25 | 289.70 | 559.00 | 2.50 | 3.00 | 6300.20 | 6468.00 | 29.60 | 33.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.35 | 369.40 | 681.00 | 2.50 | 4.00 | 6392.40 | 6497.00 | 28.90 | 33.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.45 | 326.30 | 1137.00 | 2.70 | 4.00 | 6393.20 | 6583.00 | 29.90 | 35.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
11 | −0.05 | 2277.50 | 7576.00 | 2.80 | 4.00 | 9555.20 | 10,574.00 | 32.90 | 40.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
−0.15 | 3059.00 | 7235.00 | 2.60 | 4.00 | 9623.40 | 10,245.00 | 35.10 | 40.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.25 | 2820.40 | 7941.00 | 2.90 | 4.00 | 9622.40 | 10,029.00 | 35.00 | 41.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.35 | 1825.00 | 4495.00 | 3.00 | 4.00 | 9438.90 | 9636.00 | 34.60 | 39.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.45 | 3975.40 | 8359.00 | 3.10 | 4.00 | 9510.50 | 9574.00 | 32.40 | 37.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
12 | −0.05 | 43,663.80 | 249,222.00 | 3.00 | 4.00 | 13,429.20 | 13,721.00 | 37.90 | 42.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
−0.15 | 15,348.60 | 48,956.00 | 3.00 | 3.00 | 13,489.70 | 13,579.00 | 38.50 | 43.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.25 | 11,382.60 | 31,237.00 | 3.00 | 4.00 | 13,531.00 | 13,761.00 | 37.40 | 41.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.35 | 15,998.20 | 41,520.00 | 3.20 | 4.00 | 13,551.90 | 13,629.00 | 36.80 | 40.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.45 | 11,888.50 | 23,289.00 | 2.90 | 4.00 | 13,488.40 | 13,764.00 | 36.60 | 40.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
13 | −0.05 | 109,898.30 | 275,375.00 | 3.20 | 5.00 | 19,035.90 | 19,623.00 | 41.10 | 45.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
−0.15 | 105,751.30 | 351,782.00 | 3.20 | 4.00 | 20,933.70 | 21,178.00 | 58.40 | 67.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.25 | 154,626.70 | 558,105.00 | 3.50 | 5.00 | 20,908.20 | 21,192.00 | 44.70 | 50.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.35 | 126,965.30 | 388,984.00 | 3.60 | 5.00 | 21,161.30 | 21,623.00 | 45.40 | 56.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.45 | 86,593.80 | 179,924.00 | 3.20 | 4.00 | 20,846.10 | 21,103.00 | 45.80 | 50.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
14 | −0.05 | 1,975,604.70 | 6,520,424.00 | 4.00 | 5.00 | 28,643.70 | 29,639.00 | 50.40 | 61.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
−0.15 | 627,934.70 | 1,950,400.00 | 3.80 | 5.00 | 28,375.90 | 29,788.00 | 50.70 | 57.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.25 | 1,348,825.50 | 5,293,208.00 | 3.70 | 5.00 | 27,533.80 | 28,386.00 | 50.40 | 57.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.35 | 1,584,079.50 | 3,760,187.00 | 3.80 | 4.00 | 27,597.90 | 28,497.00 | 47.50 | 52.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
−0.45 | 525,962.40 | 2,133,680.00 | 3.60 | 5.00 | 27,711.00 | 28,777.00 | 50.80 | 57.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
CPU | CPU | CPU | CPU | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max | ||
10 | −0.05 | 10,305.20 | 36,694.00 | 0.50 | 1.00 | 6015.20 | 6323.00 | 28.20 | 31.00 | 0.04218 | 0.39472 | 0.03749 | 0.34789 | 0.00283 | 0.02818 |
−0.15 | 10,480.30 | 34,742.00 | 0.80 | 1.00 | 6166.50 | 6907.00 | 28.80 | 31.00 | 0.08256 | 0.43024 | 0.03495 | 0.15143 | 0.02095 | 0.15143 | |
−0.25 | 9196.60 | 32,804.00 | 0.60 | 1.00 | 6415.30 | 7057.00 | 29.90 | 33.00 | 0.07226 | 0.55399 | 0.00010 | 0.00044 | 0.00005 | 0.00027 | |
−0.35 | 4954.30 | 11,796.00 | 0.50 | 1.00 | 6459.70 | 6808.00 | 28.50 | 31.00 | 0.18064 | 0.87068 | 0.16134 | 0.80792 | 0.06763 | 0.54899 | |
−0.45 | 4865.40 | 22,349.00 | 0.60 | 1.00 | 6241.00 | 6538.00 | 28.90 | 32.00 | 0.18803 | 1.50585 | 0.06177 | 0.43674 | 0.07752 | 0.43663 | |
11 | −0.05 | 91,394.00 | 622,506.00 | 0.80 | 1.00 | 10,001.10 | 10,646.00 | 34.00 | 37.00 | 0.25495 | 2.30240 | 0.14385 | 1.27138 | 0.13366 | 1.30486 |
−0.15 | 56,224.40 | 204,366.00 | 0.60 | 1.00 | 9461.60 | 9772.00 | 34.70 | 43.00 | 0.06988 | 0.23636 | 0.01290 | 0.08721 | 0.00456 | 0.03986 | |
−0.25 | 12,090.70 | 38,411.00 | 0.90 | 1.00 | 9562.80 | 9686.00 | 35.40 | 38.00 | 0.09294 | 0.69462 | 0.08318 | 0.69308 | 0.06598 | 0.42501 | |
−0.35 | 13,685.00 | 31,216.00 | 0.80 | 1.00 | 9459.70 | 9690.00 | 33.00 | 39.00 | 0.02092 | 0.20837 | 0.00825 | 0.08166 | 0.01607 | 0.15985 | |
−0.45 | 18,151.40 | 38,034.00 | 0.60 | 1.00 | 4864.90 | 9833.00 | 33.30 | 37.00 | 0.11889 | 0.91132 | 0.07830 | 0.78286 | 0.10588 | 0.91320 | |
12 | −0.05 | 157,757.60 | 810,455.00 | 0.90 | 3.00 | 13,496.00 | 14,138.00 | 37.90 | 40.00 | 0.04467 | 0.36133 | 0.00726 | 0.07235 | 0.04465 | 0.36133 |
−0.15 | 127,675.80 | 1,065,652.00 | 0.70 | 1.00 | 13,645.70 | 14,137.00 | 40.60 | 47.00 | 0.06921 | 0.53511 | 0.05355 | 0.53497 | 0.02415 | 0.14151 | |
−0.25 | 296,353.00 | 2,182,038.00 | 0.80 | 1.00 | 13,741.40 | 14,244.00 | 40.30 | 42.00 | 0.09690 | 0.39529 | 0.06874 | 0.32601 | 0.05331 | 0.39529 | |
−0.35 | 88,240.90 | 538,187.00 | 0.90 | 1.00 | 14,561.60 | 14,750.00 | 40.30 | 51.00 | 0.20473 | 1.21564 | 0.10062 | 0.45672 | 0.10604 | 0.45672 | |
−0.45 | 413,334.20 | 1,836,635.00 | 1.00 | 2.00 | 14,099.60 | 15,139.00 | 38.90 | 45.00 | 0.08252 | 0.41016 | 0.02552 | 0.24349 | 0.01177 | 0.09664 | |
13 | −0.05 | 1,029,283.60 | 7,508,050.00 | 1.50 | 4.00 | 20,240.20 | 20,774.00 | 44.00 | 48.00 | 0.03795 | 0.22730 | 0.00474 | 0.02579 | 0.03795 | 0.22730 |
−0.15 | 683,977.20 | 3,227,291.00 | 1.10 | 2.00 | 19,994.40 | 20,716.00 | 47.30 | 53.00 | 0.10531 | 0.62497 | 0.06028 | 0.42515 | 0.09941 | 0.62497 | |
−0.25 | 628,087.20 | 2,123,450.00 | 1.40 | 2.00 | 18,789.50 | 20,336.00 | 43.90 | 51.00 | 0.05224 | 0.40890 | 0.02712 | 0.17042 | 0.01294 | 0.10057 | |
−0.35 | 2,514,477.00 | 16,455,978.00 | 0.90 | 1.00 | 17,355.60 | 18,137.00 | 40.90 | 45.00 | 0.07098 | 0.36171 | 0.02734 | 0.12875 | 0.07098 | 0.36171 | |
−0.45 | 614,653.20 | 2,136,786.00 | 0.90 | 2.00 | 19,857.20 | 20,682.00 | 46.60 | 55.00 | 0.12851 | 0.44154 | 0.03852 | 0.22742 | 0.04689 | 0.22950 | |
14 | −0.05 | 4,243,698.70 | 16,271,598.00 | 1.40 | 3.00 | 27,734.50 | 30,028.00 | 50.80 | 54.00 | 0.00384 | 0.03828 | 0.00000 | 0.00001 | 0.00384 | 0.03828 |
−0.15 | 2,984,049.70 | 20,082,425.00 | 1.20 | 2.00 | 27,863.80 | 29,586.00 | 50.80 | 55.00 | 0.16317 | 1.04992 | 0.02443 | 0.13516 | 0.16317 | 1.04992 | |
−0.25 | 7,974,330.60 | 38,573,838.00 | 1.40 | 2.00 | 27,222.70 | 29,202.00 | 51.50 | 64.00 | 0.08036 | 0.79983 | 0.03371 | 0.33332 | 0.08036 | 0.79983 | |
−0.35 | 4,460,957.40 | 37,780,840.00 | 1.10 | 2.00 | 26,115.40 | 28,408.00 | 50.00 | 67.00 | 0.09733 | 0.46055 | 0.01941 | 0.19361 | 0.09733 | 0.46055 | |
−0.45 | 1,992,466.30 | 7,281,374.00 | 1.20 | 2.00 | 27,364.00 | 29,196.00 | 51.40 | 61.00 | 0.22166 | 1.66465 | 0.18160 | 1.54309 | 0.20138 | 1.66465 |
CPU | CPU | CPU | CPU | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max | ||
10 | −0.05 | 11,898.80 | 57,335.00 | 0.60 | 1.00 | 6197.00 | 6556.00 | 29.60 | 35.00 | 0.09524 | 0.83987 | 0.08399 | 0.83987 | 0.08420 | 0.83987 |
−0.15 | 10,861.50 | 28,751.00 | 0.40 | 1.00 | 6283.70 | 6477.00 | 31.60 | 37.00 | 0.05090 | 0.50884 | 0.03943 | 0.39433 | 0.00000 | 0.00000 | |
−0.25 | 13,352.90 | 72,680.00 | 0.50 | 1.00 | 6161.80 | 6561.00 | 29.60 | 34.00 | 0.05048 | 0.24549 | 0.00818 | 0.08170 | 0.00000 | 0.00000 | |
−0.35 | 7534.20 | 46,164.00 | 0.70 | 1.00 | 6379.10 | 6586.00 | 30.00 | 33.00 | 0.07483 | 0.36011 | 0.05767 | 0.35996 | 0.02587 | 0.13494 | |
−0.45 | 3355.30 | 15,258.00 | 0.60 | 1.00 | 6582.30 | 7616.00 | 30.00 | 33.00 | 0.23372 | 2.33720 | 0.13830 | 1.38300 | 0.00000 | 0.00000 | |
11 | −0.05 | 11,727.30 | 27,595.00 | 0.50 | 1.00 | 9158.10 | 9709.00 | 33.20 | 38.00 | 0.05618 | 0.21427 | 0.03154 | 0.17124 | 0.01724 | 0.17150 |
−0.15 | 49,113.70 | 122,708.00 | 0.80 | 1.00 | 9471.50 | 9669.00 | 33.50 | 36.00 | 0.06573 | 0.44529 | 0.06012 | 0.41753 | 0.00284 | 0.02826 | |
−0.25 | 25,227.10 | 147,330.00 | 0.50 | 1.00 | 9627.00 | 10,188.00 | 35.70 | 42.00 | 0.12450 | 1.02758 | 0.08730 | 0.87293 | 0.00004 | 0.00024 | |
−0.35 | 36,752.00 | 275,376.00 | 0.60 | 1.00 | 9292.10 | 9659.00 | 33.50 | 39.00 | 0.05718 | 0.31665 | 0.03415 | 0.19332 | 0.03172 | 0.31665 | |
−0.45 | 4012.80 | 12,740.00 | 0.60 | 2.00 | 9527.90 | 9687.00 | 34.40 | 38.00 | 0.09081 | 0.66967 | 0.04638 | 0.23765 | 0.04376 | 0.19914 | |
12 | −0.05 | 228,804.40 | 1,216,417.00 | 1.00 | 1.00 | 13,300.50 | 13,812.00 | 38.70 | 43.00 | 0.04202 | 0.23287 | 0.01873 | 0.18729 | 0.04202 | 0.23287 |
−0.15 | 163,787.10 | 895,682.00 | 1.00 | 1.00 | 13,050.80 | 13,526.00 | 39.50 | 44.00 | 0.00922 | 0.06557 | 0.00001 | 0.00004 | 0.00000 | 0.00002 | |
−0.25 | 155,448.80 | 790,989.00 | 1.00 | 1.00 | 13,125.80 | 13,624.00 | 38.70 | 43.00 | 0.10681 | 0.51907 | 0.06011 | 0.38198 | 0.09175 | 0.46834 | |
−0.35 | 316,255.90 | 2,364,817.00 | 0.90 | 1.00 | 13,364.60 | 13,898.00 | 38.10 | 42.00 | 0.11751 | 0.54056 | 0.02235 | 0.22345 | 0.00147 | 0.01435 | |
−0.45 | 496,839.00 | 2,609,338.00 | 1.00 | 2.00 | 13,124.00 | 13,872.00 | 38.40 | 44.00 | 0.04466 | 0.23933 | 0.02020 | 0.20190 | 0.03430 | 0.23933 | |
13 | −0.05 | 393,103.50 | 2,633,680.00 | 1.00 | 2.00 | 18,654.40 | 19,578.00 | 44.20 | 48.00 | 0.09319 | 0.73525 | 0.02453 | 0.16912 | 0.06215 | 0.42484 |
−0.15 | 1,614,567.50 | 7,339,914.00 | 1.10 | 2.00 | 20,351.20 | 21,565.00 | 46.50 | 48.00 | 0.29944 | 1.28499 | 0.07542 | 0.41595 | 0.17030 | 1.28499 | |
−0.25 | 1,028,580.60 | 5,506,700.00 | 1.10 | 2.00 | 20,091.00 | 21,060.00 | 48.10 | 53.00 | 0.04309 | 0.19368 | 0.00735 | 0.07347 | 0.00857 | 0.08571 | |
−0.35 | 649,025.30 | 3,329,984.00 | 1.20 | 2.00 | 20,733.00 | 22,232.00 | 45.60 | 54.00 | 0.09363 | 0.45811 | 0.05546 | 0.45640 | 0.03537 | 0.17480 | |
−0.45 | 986,772.90 | 4,045,625.00 | 0.90 | 1.00 | 20,052.60 | 21,235.00 | 45.60 | 58.00 | 0.00000 | 0.00003 | 0.00000 | 0.00001 | 0.00000 | 0.00003 | |
14 | −0.05 | 1,396,713.10 | 4,382,671.00 | 1.40 | 2.00 | 27,991.30 | 29,138.00 | 52.50 | 62.00 | 0.03093 | 0.13401 | 0.01705 | 0.13049 | 0.03093 | 0.13401 |
−0.15 | 2,599,787.50 | 10,633,928.00 | 1.00 | 1.00 | 27,803.70 | 29,593.00 | 52.90 | 65.00 | 0.02042 | 0.20398 | 0.01966 | 0.19642 | 0.01966 | 0.19642 | |
−0.25 | 3,708,771.50 | 20,829,998.00 | 1.50 | 2.00 | 27,054.60 | 28,450.00 | 50.10 | 53.00 | 0.32720 | 2.78410 | 0.09193 | 0.91912 | 0.30721 | 2.78481 | |
−0.35 | 1,896,808.60 | 9,928,279.00 | 1.50 | 2.00 | 26,980.30 | 28,288.00 | 49.90 | 60.00 | 0.12860 | 0.60568 | 0.04617 | 0.24369 | 0.08606 | 0.36122 | |
−0.45 | 740,966.10 | 3,267,537.00 | 1.50 | 2.00 | 27,695.10 | 29,096.00 | 48.70 | 56.00 | 0.02891 | 0.12388 | 0.00038 | 0.00326 | 0.02623 | 0.11463 |
n | CPU | CPU | CPU | CPU | ||||
---|---|---|---|---|---|---|---|---|
10 | −0.05 | 1779.64 | 3.91 | 6453.79 | 33.82 | 0.00 | 0.00 | 0.00 |
−0.15 | 511.82 | 3.91 | 6484.40 | 34.00 | 0.00 | 0.00 | 0.00 | |
−0.25 | 2088.97 | 3.82 | 7051.41 | 33.82 | 0.00 | 0.00 | 0.00 | |
−0.35 | 1192.92 | 3.00 | 6597.76 | 35.91 | 0.00 | 0.00 | 0.00 | |
−0.45 | 2167.61 | 3.00 | 6584.69 | 35.73 | 0.00 | 0.00 | 0.00 | |
11 | −0.05 | 5947.50 | 3.91 | 10,635.04 | 41.55 | 0.00 | 0.00 | 0.00 |
−0.15 | 10,449.60 | 3.91 | 9614.38 | 35.82 | 0.00 | 0.00 | 0.00 | |
−0.25 | 7076.59 | 3.00 | 9648.97 | 40.64 | 0.00 | 0.00 | 0.00 | |
−0.35 | 6598.16 | 3.00 | 9607.01 | 37.73 | 0.00 | 0.00 | 0.00 | |
−0.45 | 6278.25 | 3.00 | 9780.46 | 38.82 | 0.00 | 0.00 | 0.00 | |
12 | −0.05 | 32,919.31 | 3.91 | 13,972.90 | 42.91 | 0.00 | 0.00 | 0.00 |
−0.15 | 51,645.49 | 4.00 | 14,191.74 | 42.91 | 0.00 | 0.00 | 0.00 | |
−0.25 | 72,109.32 | 4.91 | 14,365.03 | 46.73 | 0.00 | 0.00 | 0.00 | |
−0.35 | 37,495.17 | 4.00 | 14,773.35 | 41.82 | 0.00 | 0.00 | 0.00 | |
−0.45 | 78,260.73 | 4.00 | 15,051.20 | 41.00 | 0.00 | 0.00 | 0.00 | |
13 | −0.05 | 884,032.91 | 4.00 | 20,776.09 | 60.28 | 0.00 | 0.00 | 0.00 |
−0.15 | 1,391,338.25 | 4.00 | 21,100.76 | 54.55 | 0.00 | 0.00 | 0.00 | |
−0.25 | 294,466.97 | 4.91 | 20,785.18 | 52.37 | 0.00 | 0.00 | 0.00 | |
−0.35 | 913,411.51 | 3.91 | 19,462.94 | 43.00 | 0.00 | 0.00 | 0.00 | |
−0.45 | 695,887.03 | 4.00 | 20,539.02 | 52.00 | 0.00 | 0.00 | 0.00 | |
14 | −0.05 | 7,023,622.79 | 4.91 | 30,137.74 | 53.91 | 0.00 | 0.00 | 0.00 |
−0.15 | 4,427,725.64 | 4.91 | 29,468.18 | 69.82 | 0.00 | 0.00 | 0.00 | |
−0.25 | 2,335,338.31 | 4.00 | 28,844.84 | 53.00 | 0.00 | 0.00 | 0.00 | |
−0.35 | 1,422,758.39 | 4.91 | 28,392.26 | 50.82 | 0.00 | 0.00 | 0.00 | |
−0.45 | 1,190,194.87 | 4.91 | 29,046.14 | 53.73 | 0.00 | 0.00 | 0.00 |
n | CPU | CPU | CPU | CPU | ||||
---|---|---|---|---|---|---|---|---|
10 | −0.05 | 1.00 | 36,582.04 | 6322.55 | 31.00 | 0.36 | 0.32 | 0.03 |
−0.15 | 1.00 | 32,939.03 | 6852.55 | 30.91 | 0.41 | 0.15 | 0.14 | |
−0.25 | 1.00 | 31,930.10 | 7045.39 | 33.00 | 0.52 | 0.00 | 0.00 | |
−0.35 | 1.00 | 11,768.73 | 6800.17 | 30.91 | 0.86 | 0.80 | 0.51 | |
−0.45 | 1.00 | 21,185.84 | 6527.83 | 32.00 | 1.40 | 0.41 | 0.43 | |
11 | −0.05 | 1.00 | 577,820.91 | 10,637.54 | 37.00 | 2.11 | 1.17 | 1.19 |
−0.15 | 1.00 | 195,931.92 | 9759.13 | 42.64 | 0.23 | 0.08 | 0.04 | |
−0.25 | 1.00 | 37,683.62 | 9683.48 | 38.00 | 0.65 | 0.64 | 0.40 | |
−0.35 | 1.00 | 31,184.32 | 9688.47 | 38.73 | 0.19 | 0.07 | 0.15 | |
−0.45 | 1.00 | 37,845.27 | 9832.91 | 36.91 | 0.84 | 0.71 | 0.84 | |
12 | −0.05 | 2.82 | 766,120.01 | 14,102.90 | 40.00 | 0.34 | 0.07 | 0.34 |
−0.15 | 1.00 | 975,232.51 | 14,136.91 | 46.91 | 0.50 | 0.49 | 0.14 | |
−0.25 | 1.00 | 2,034,697.47 | 14,243.64 | 42.00 | 0.39 | 0.32 | 0.37 | |
−0.35 | 1.00 | 500,028.35 | 14,749.82 | 50.55 | 1.14 | 0.44 | 0.44 | |
−0.45 | 1.91 | 1,828,255.73 | 15,127.21 | 44.64 | 0.41 | 0.22 | 0.09 | |
13 | −0.05 | 3.82 | 6,949,396.78 | 20,755.73 | 48.00 | 0.22 | 0.03 | 0.22 |
−0.15 | 1.91 | 3,105,394.01 | 20,709.07 | 52.82 | 0.60 | 0.40 | 0.60 | |
−0.25 | 2.00 | 2,088,152.09 | 20,256.08 | 50.64 | 0.38 | 0.16 | 0.09 | |
−0.35 | 1.00 | 15,534,130.68 | 18,127.91 | 44.64 | 0.35 | 0.13 | 0.35 | |
−0.45 | 1.91 | 2,028,775.74 | 20,673.90 | 54.46 | 0.44 | 0.22 | 0.22 | |
14 | −0.05 | 2.91 | 16,002,957.72 | 29,994.79 | 54.00 | 0.03 | 0.00 | 0.03 |
−0.15 | 2.00 | 18,625,896.32 | 29,536.95 | 55.00 | 0.98 | 0.13 | 0.98 | |
−0.25 | 2.00 | 36,543,648.06 | 29,187.33 | 63.01 | 0.73 | 0.30 | 0.73 | |
−0.35 | 1.91 | 34,893,804.61 | 28,402.06 | 66.01 | 0.46 | 0.18 | 0.46 | |
−0.45 | 2.00 | 7,111,942.52 | 29,151.18 | 60.28 | 1.54 | 1.42 | 1.54 |
n | CPU | CPU | CPU | CPU | ||||
---|---|---|---|---|---|---|---|---|
10 | −0.05 | 1779.64 | 3.91 | 6453.79 | 33.82 | 0.00 | 0.00 | 0.00 |
−0.15 | 511.82 | 3.91 | 6484.40 | 34.00 | 0.00 | 0.00 | 0.00 | |
−0.25 | 2088.97 | 3.82 | 7051.41 | 33.82 | 0.00 | 0.00 | 0.00 | |
−0.35 | 1192.92 | 3.00 | 6597.76 | 35.91 | 0.00 | 0.00 | 0.00 | |
−0.45 | 2167.61 | 3.00 | 6584.69 | 35.73 | 0.00 | 0.00 | 0.00 | |
11 | −0.05 | 5947.50 | 3.91 | 10,635.04 | 41.55 | 0.00 | 0.00 | 0.00 |
−0.15 | 10,449.60 | 3.91 | 9614.38 | 35.82 | 0.00 | 0.00 | 0.00 | |
−0.25 | 7076.59 | 3.00 | 9648.97 | 40.64 | 0.00 | 0.00 | 0.00 | |
−0.35 | 6598.16 | 3.00 | 9607.01 | 37.73 | 0.00 | 0.00 | 0.00 | |
−0.45 | 6278.25 | 3.00 | 9780.46 | 38.82 | 0.00 | 0.00 | 0.00 | |
12 | −0.05 | 32,919.31 | 3.91 | 13,972.90 | 42.91 | 0.00 | 0.00 | 0.00 |
−0.15 | 51,645.49 | 4.00 | 14,191.74 | 42.91 | 0.00 | 0.00 | 0.00 | |
−0.25 | 72,109.32 | 4.91 | 14,365.03 | 46.73 | 0.00 | 0.00 | 0.00 | |
−0.35 | 37,495.17 | 4.00 | 14,773.35 | 41.82 | 0.00 | 0.00 | 0.00 | |
−0.45 | 78,260.73 | 4.00 | 15,051.20 | 41.00 | 0.00 | 0.00 | 0.00 | |
13 | −0.05 | 884,032.91 | 4.00 | 20,776.09 | 60.28 | 0.00 | 0.00 | 0.00 |
−0.15 | 1,391,338.25 | 4.00 | 21,100.76 | 54.55 | 0.00 | 0.00 | 0.00 | |
−0.25 | 294,466.97 | 4.91 | 20,785.18 | 52.37 | 0.00 | 0.00 | 0.00 | |
−0.35 | 913,411.51 | 3.91 | 19,462.94 | 43.00 | 0.00 | 0.00 | 0.00 | |
−0.45 | 695,887.03 | 4.00 | 20,539.02 | 52.00 | 0.00 | 0.00 | 0.00 | |
14 | −0.05 | 7,023,622.79 | 4.91 | 30,137.74 | 53.91 | 0.00 | 0.00 | 0.00 |
−0.15 | 4,427,725.64 | 4.91 | 29,468.18 | 69.82 | 0.00 | 0.00 | 0.00 | |
−0.25 | 2,335,338.31 | 4.00 | 28,844.84 | 53.00 | 0.00 | 0.00 | 0.00 | |
−0.35 | 1,422,758.39 | 4.91 | 28,392.26 | 50.82 | 0.00 | 0.00 | 0.00 | |
−0.45 | 1,190,194.87 | 4.91 | 29,046.14 | 53.73 | 0.00 | 0.00 | 0.00 |
n | CPU | CPU | CPU | CPU | ||||
---|---|---|---|---|---|---|---|---|
10 | −0.05 | 1.00 | 54,600.71 | 6552.04 | 34.82 | 0.77 | 0.76 | 0.76 |
−0.15 | 1.00 | 28,288.04 | 6474.21 | 36.82 | 0.46 | 0.36 | 0.00 | |
−0.25 | 1.00 | 68,076.05 | 6559.65 | 33.82 | 0.24 | 0.07 | 0.00 | |
−0.35 | 1.00 | 42,965.58 | 6583.21 | 32.91 | 0.35 | 0.34 | 0.13 | |
−0.45 | 1.00 | 14,337.84 | 7547.78 | 32.91 | 2.13 | 1.26 | 0.00 | |
11 | −0.05 | 1.00 | 27,395.02 | 9704.86 | 37.91 | 0.21 | 0.17 | 0.16 |
−0.15 | 1.00 | 119,386.46 | 9665.94 | 36.00 | 0.42 | 0.40 | 0.03 | |
−0.25 | 1.00 | 140,723.82 | 10,179.72 | 41.73 | 0.95 | 0.79 | 0.00 | |
−0.35 | 1.00 | 253,145.91 | 9658.82 | 38.91 | 0.31 | 0.19 | 0.29 | |
−0.45 | 1.91 | 12,473.06 | 9679.62 | 37.91 | 0.63 | 0.23 | 0.20 | |
12 | −0.05 | 1.00 | 1,168,389.31 | 13,804.71 | 42.91 | 0.23 | 0.17 | 0.23 |
−0.15 | 1.00 | 843,280.49 | 13,525.73 | 43.91 | 0.06 | 0.00 | 0.00 | |
−0.25 | 1.00 | 748,983.66 | 13,607.80 | 42.82 | 0.50 | 0.36 | 0.45 | |
−0.35 | 1.00 | 2,185,049.74 | 13,887.38 | 41.91 | 0.53 | 0.20 | 0.01 | |
−0.45 | 1.91 | 2,564,437.00 | 13,865.61 | 43.91 | 0.22 | 0.18 | 0.22 | |
13 | −0.05 | 1.91 | 2,436,347.89 | 19,569.36 | 47.91 | 0.68 | 0.16 | 0.40 |
−0.15 | 1.91 | 6,954,946.38 | 21,516.94 | 48.00 | 1.27 | 0.40 | 1.19 | |
−0.25 | 1.91 | 5,214,892.01 | 21,056.49 | 52.91 | 0.19 | 0.07 | 0.08 | |
−0.35 | 2.00 | 3,150,038.27 | 22,156.76 | 53.64 | 0.44 | 0.42 | 0.17 | |
−0.45 | 1.00 | 3,882,834.17 | 21,227.35 | 57.28 | 0.00 | 0.00 | 0.00 | |
14 | −0.05 | 2.00 | 4,372,111.75 | 29,095.25 | 61.46 | 0.13 | 0.12 | 0.13 |
−0.15 | 1.00 | 10,141,020.50 | 29,550.43 | 64.10 | 0.19 | 0.18 | 0.18 | |
−0.25 | 2.00 | 19,428,368.78 | 28,446.40 | 53.00 | 2.57 | 0.84 | 2.56 | |
−0.35 | 2.00 | 9,678,404.17 | 28,284.49 | 59.46 | 0.58 | 0.24 | 0.35 | |
−0.45 | 2.00 | 3,203,748.33 | 29,062.16 | 56.00 | 0.12 | 0.00 | 0.11 |
n | |||
---|---|---|---|
11 | −0.05 | 2.565 | 2.619 |
−0.15 | 2.597 | 2.909 | |
−0.25 | 2.569 | 2.813 | |
−0.35 | 2.618 | 2.877 | |
−0.45 | 2.583 | 2.867 | |
12 | −0.05 | 2.562 | 2.814 |
−0.15 | 2.648 | 2.956 | |
−0.25 | 2.639 | 2.946 | |
−0.35 | 2.578 | 2.916 | |
−0.45 | 2.618 | 2.879 | |
13 | −0.05 | 2.618 | 2.965 |
−0.15 | 2.642 | 3.014 | |
−0.25 | 2.561 | 2.829 | |
−0.35 | 2.631 | 3.009 | |
−0.45 | 2.634 | 2.967 | |
14 | −0.05 | 2.650 | 3.047 |
−0.15 | 2.617 | 2.999 | |
−0.25 | 2.561 | 2.933 | |
−0.35 | 2.564 | 2.813 | |
−0.45 | 2.627 | 2.914 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Wang, J.-B. Single-Machine Scheduling with Simultaneous Learning Effects and Delivery Times. Mathematics 2024, 12, 2522. https://doi.org/10.3390/math12162522
Liu Z, Wang J-B. Single-Machine Scheduling with Simultaneous Learning Effects and Delivery Times. Mathematics. 2024; 12(16):2522. https://doi.org/10.3390/math12162522
Chicago/Turabian StyleLiu, Zheng, and Ji-Bo Wang. 2024. "Single-Machine Scheduling with Simultaneous Learning Effects and Delivery Times" Mathematics 12, no. 16: 2522. https://doi.org/10.3390/math12162522
APA StyleLiu, Z., & Wang, J.-B. (2024). Single-Machine Scheduling with Simultaneous Learning Effects and Delivery Times. Mathematics, 12(16), 2522. https://doi.org/10.3390/math12162522