Cauchy Problem for Stochastic Nonlinear Schrödinger Equation with Nonlinear Energy-Critical Damping
Abstract
:1. Introduction and Main Result
- (i)
- either and ,
- (ii)
- or and ,
2. Local Existence and Uniqueness
3. The Evolution Laws of the Momentum and Modified Energy
4. Global Well-Posedness
- (i)
- if , then
- (ii)
- if and , then
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sulem, C.; Sulem, P.L. The Nonlinear Schrödinger Equation, Self-Focusing and Wave Collapse; Springer: New York, NY, USA, 1999. [Google Scholar]
- Cazenave, T. Semilinear Schrödinger Equations; Courant Lecture Notes in Mathematics; New York University, Courant Institute of Mathematical Sciences: New York, NY, USA; American Mathematical Society: Providence, RI, USA, 2003; Volume 10. [Google Scholar]
- Antonelli, P.; Carles, R.; Sparber, C. On nonlinear Schrödinger type equations with nonlinear damping. Int. Math. Res. Not. 2015, 2015, 740–762. [Google Scholar] [CrossRef]
- Feng, B.; Zhao, D. Global well-posedness for nonlinear Schrödinger equations with energy-critical damping. Electron. J. Differ. Equ. 2015, 2015, 1–9. [Google Scholar]
- Biswas, A. Optical soliton perturbation with nonlinear damping and saturable amplifiers. Math. Comput. Sim. 2001, 56, 521–537. [Google Scholar] [CrossRef]
- Kagan, Y.; Muryshev, A.E.; Shlyapnikov, G.V. Collapse and Bose-Einstein condensation in a trapped Bose gas with negative scattering length. Phys. Rev. Lett. 1998, 81, 933–937. [Google Scholar] [CrossRef]
- Adhikari, S.K. Mean-field description of collapsing and exploding Bose-Einstein condensates. Phy. Rev. A 2002, 66, 13611–13619. [Google Scholar] [CrossRef]
- De Bouard, A.; Debussche, A. The stochastic nonlinear Schrödinger equation in H1. Stoch. Anal. Appl. 2003, 21, 97–126. [Google Scholar] [CrossRef]
- De Bouard, A.; Fukuizumi, R. Representation formula for stochastic Schrödinger evolution equations and applications. Nonlinearity 2012, 25, 2993–3022. [Google Scholar] [CrossRef]
- Barbu, V.; Röckner, M.; Zhang, D. Stochastic nonlinear Schrödinger equations. Nonlinear Anal. 2016, 136, 168–194. [Google Scholar] [CrossRef]
- Cui, J.; Hong, J.; Sun, L. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discret. Contin. Dyn. Syst. 2019, 24, 6837–6854. [Google Scholar]
- Oh, T.; Okamoto, M. On the stochastic nonlinear Schrödinger equations at critical regularities. Stochastics Partial. Differ. Equ. 2020, 8, 869–894. [Google Scholar]
- Fan, C.; Xu, W.; Zhao, Z. Long time behavior of stochastic NLS with a small multiplicative noise. Commun. Math. Phys. 2023, 404, 563–595. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, L.; Qiu, L. Cauchy Problem for Stochastic Nonlinear Schrödinger Equation with Nonlinear Energy-Critical Damping. Mathematics 2024, 12, 2501. https://doi.org/10.3390/math12162501
Miao L, Qiu L. Cauchy Problem for Stochastic Nonlinear Schrödinger Equation with Nonlinear Energy-Critical Damping. Mathematics. 2024; 12(16):2501. https://doi.org/10.3390/math12162501
Chicago/Turabian StyleMiao, Lijun, and Linlin Qiu. 2024. "Cauchy Problem for Stochastic Nonlinear Schrödinger Equation with Nonlinear Energy-Critical Damping" Mathematics 12, no. 16: 2501. https://doi.org/10.3390/math12162501
APA StyleMiao, L., & Qiu, L. (2024). Cauchy Problem for Stochastic Nonlinear Schrödinger Equation with Nonlinear Energy-Critical Damping. Mathematics, 12(16), 2501. https://doi.org/10.3390/math12162501