GaitSTAR: Spatial–Temporal Attention-Based Feature-Reweighting Architecture for Human Gait Recognition
Abstract
:1. Introduction
- We propose Spatial–Temporal Attention-Based Feature Reweighting (GaitSTAR) incorporating dynamic-feature weighting via the discriminant analysis of temporal and spatial features by passing them through a channel-wise architecture.
- We introduce DSFRs to enhance the video frame quality, aiding with object feature extraction for improved motion estimation. Our FST architecture integrates image-level features into set-level representations, capturing long-range interactions. DFR further enhances feature decoding by enabling attention computation across key embedding channels, boosting query–key interactions in both temporal and spatial contexts.
- The efficacy of GaitSTAR is substantiated through comprehensive tests and comparisons performed with the CASIA-B, CASIA-C, and GAIT3D gait datasets, unveiling its superior performance over the preceding techniques across both cross-view and identical-view scenarios.
2. Related Works
3. Methodology
3.1. Overview
3.2. Dynamic Stride Flow Representation
3.2.1. Motion Estimation Using Optical Flow
3.2.2. Contrastive Frame Enhancement with a Sequential Approach
3.3. Feature-Set Transformation
3.4. Dynamic Feature Reweighting
Algorithm 1 Dynamic stride flow representation |
Require: Video sequence with frames , where Ensure: Enhanced optical flow estimation
|
3.5. Spatial Dynamic Feature Generation
3.6. Spatial–Temporal Feature Reweighting
3.7. Spatial–Temporal Attention-Based Feature Reweighting
4. Experiments and Results
4.1. Dataset
4.2. Network Configuration
4.3. GaitSTAR Performance Comparison
4.4. Evaluation on Gait3D
4.5. Ablation Studies
5. Analysis and Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.A.; Arshad, H.; Damaševičius, R.; Alqahtani, A.; Alsubai, S.; Binbusayyis, A.; Nam, Y.; Kang, B.G. Human gait analysis: A sequential framework of lightweight deep learning and improved moth-flame optimization algorithm. Comput. Intell. Neurosci. 2022, 2022, 8238375. [Google Scholar] [CrossRef] [PubMed]
- Sharif, M.I.; Khan, M.A.; Alqahtani, A.; Nazir, M.; Alsubai, S.; Binbusayyis, A.; Damaševičius, R. Deep learning and kurtosis-controlled, entropy-based framework for human gait recognition using video sequences. Electronics 2022, 11, 334. [Google Scholar] [CrossRef]
- Teepe, T.; Gilg, J.; Herzog, F.; Hörmann, S.; Rigoll, G. Towards a deeper understanding of skeleton-based gait recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 1569–1577. [Google Scholar]
- Arshad, H.; Khan, M.A.; Sharif, M.I.; Yasmin, M.; Tavares, J.M.R.; Zhang, Y.D.; Satapathy, S.C. A multilevel paradigm for deep convolutional neural network features selection with an application to human gait recognition. Expert Syst. 2022, 39, e12541. [Google Scholar] [CrossRef]
- Horn, B.K.; Schunck, B.G. Determining optical flow. Artif. Intell. 1981, 17, 185–203. [Google Scholar] [CrossRef]
- Khan, M.A.; Arshad, H.; Khan, W.Z.; Alhaisoni, M.; Tariq, U.; Hussein, H.S.; Alshazly, H.; Osman, L.; Elashry, A. HGRBOL2: Human gait recognition for biometric application using Bayesian optimization and extreme learning machine. Future Gener. Comput. Syst. 2023, 143, 337–348. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Blachut, K.; Kryjak, T. Real-time efficient fpga implementation of the multi-scale lucas-kanade and horn-schunck optical flow algorithms for a 4k video stream. Sensors 2022, 22, 5017. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhou, F.; Trajcevski, G.; Bonsangue, M. Multi-view learning with distinguishable feature fusion for rumor detection. Knowl. Based Syst. 2022, 240, 108085. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, X.f.; Gong, D.w. A return-cost-based binary firefly algorithm for feature selection. Inf. Sci. 2017, 418, 561–574. [Google Scholar] [CrossRef]
- Wu, D.; Jia, H.; Abualigah, L.; Xing, Z.; Zheng, R.; Wang, H.; Altalhi, M. Enhance teaching-learning-based optimization for tsallis-entropy-based feature selection classification approach. Processes 2022, 10, 360. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Yan, W.Q. Gait recognition using multichannel convolution neural networks. Neural Comput. Appl. 2020, 32, 14275–14285. [Google Scholar] [CrossRef]
- Filipi Gonçalves dos Santos, C.; Oliveira, D.d.S.; Passos, L.A.; Gonçalves Pires, R.; Felipe Silva Santos, D.; Pascotti Valem, L.; Moreira, T.P.; Cleison, S.; Santana, M.; Roder, M.; et al. Gait recognition based on deep learning: A survey. ACM Comput. Surv. 2022, 55, 1–34. [Google Scholar] [CrossRef]
- Li, H.; Qiu, Y.; Zhao, H.; Zhan, J.; Chen, R.; Wei, T.; Huang, Z. GaitSlice: A gait recognition model based on spatio-temporal slice features. Pattern Recognit. 2022, 124, 108453. [Google Scholar] [CrossRef]
- Shahee, S.A.; Ananthakumar, U. An effective distance based feature selection approach for imbalanced data. Appl. Intell. 2020, 50, 717–745. [Google Scholar] [CrossRef]
- Santos, C.F.G.d.; Oliveira, D.D.S.; Passos, L.A.; Pires, R.G.; Santos, D.F.S.; Valem, L.P.; Moreira, T.P.; Santana, M.C.S.; Roder, M.; Papa, J.P.; et al. Gait recognition based on deep learning: A survey. arXiv 2022, arXiv:2201.03323. [Google Scholar]
- Tsuji, A.; Makihara, Y.; Yagi, Y. Silhouette transformation based on walking speed for gait identification. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 717–722. [Google Scholar]
- Farnebäck, G. Two-frame motion estimation based on polynomial expansion. In Image Analysis, Proceedings of the 13th Scandinavian Conference, SCIA 2003, Halmstad, Sweden, 29 June–2 July 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 363–370. [Google Scholar]
- Zhu, H.; Zheng, Z.; Nevatia, R. Gait recognition using 3-d human body shape inference. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2–7 January 2023; pp. 909–918. [Google Scholar]
- Teepe, T.; Khan, A.; Gilg, J.; Herzog, F.; Hörmann, S.; Rigoll, G. Gaitgraph: Graph convolutional network for skeleton-based gait recognition. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 2314–2318. [Google Scholar]
- Kusakunniran, W.; Wu, Q.; Zhang, J.; Li, H. Gait recognition under various viewing angles based on correlated motion regression. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 966–980. [Google Scholar] [CrossRef]
- Yaseen, M.U.; Nasralla, M.M.; Aslam, F.; Ali, S.S.; Khattak, S.B.A. A Novel Approach based on Multi-level Bottleneck Attention Modules using Self-guided Dropblock for Person Re-identification. IEEE Access 2022, 10, 123160–123176. [Google Scholar] [CrossRef]
- Nie, X.; Peng, J.; Wu, Y.; Gupta, B.B.; Abd El-Latif, A.A. Real-Time Traffic Speed Estimation for Smart Cities with Spatial Temporal Data: A Gated Graph Attention Network Approach. Big Data Res. 2022, 28, 100313. [Google Scholar] [CrossRef]
- Rahevar, M.; Ganatra, A.; Saba, T.; Rehman, A.; Bahaj, S.A. Spatial–Temporal Dynamic Graph Attention Network for Skeleton-Based Action Recognition. IEEE Access 2023, 11, 21546–21553. [Google Scholar] [CrossRef]
- Mushtaq, H.; Deng, X.; Ullah, I.; Ali, M.; Hayat, B. O2SAT: Object-Oriented-Segmentation-Guided Spatial-Attention Network for 3D Object Detection in Autonomous Vehicles. Information 2024, 7, 376. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, S.; Zhao, J.; Zhou, Y.; Niu, Q.; Yao, R.; Zhu, D.; Chen, H. Adversarial learning-based skeleton synthesis with spatial-channel attention for robust gait recognition. Multimed. Tools Appl. 2023, 82, 1489–1504. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, S.; Yu, X. Gait Recognition via Effective Global-Local Feature Representation and Local Temporal Aggregation. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 14628–14636. [Google Scholar] [CrossRef]
- Boulila, W. An approach based on performer-attention-guided few-shot learning model for plant disease classification. Earth Sci. Inform. 2024. [CrossRef]
- Boulila, W.; Ghandorh, H.; Masood, S.; Alzahem, A.; Koubaa, A.; Ahmed, F.; Ahmad, J.; Khan, Z. A transformer-based approach empowered by a self-attention technique for semantic segmentation in remote sensing. Heliyon 2024, 10, e29396. [Google Scholar] [CrossRef]
- Yasmeen, S.; Yaseen, M.U.; Ali, S.S.; Nasralla, M.M.; Khattak, S.B.A. PAN-DeSpeck: A Lightweight Pyramid and Attention-Based Network for SAR Image Despeckling. Comput. Mater. Contin. 2023, 76, e041195. [Google Scholar] [CrossRef]
- Yu, S.; Tan, D.; Tan, T. A Framework for Evaluating the Effect of View Angle, Clothing and Carrying Condition on Gait Recognition. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; Volume 4, pp. 441–444. [Google Scholar] [CrossRef]
- Tan, D.; Huang, K.; Yu, S.; Tan, T. Efficient Night Gait Recognition Based on Template Matching. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; Volume 3, pp. 1000–1003. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, X.; Liu, W.; He, L.; Yan, C.; Mei, T. Gait recognition in the wild with dense 3d representations and a benchmark. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 20228–20237. [Google Scholar]
- He, Z.; Wang, W.; Dong, J.; Tan, T. Temporal sparse adversarial attack on sequence-based gait recognition. Pattern Recognit. 2023, 133, 109028. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, S.; Bao, F. Gait recognition with multiple-temporal-scale 3d convolutional neural network. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 3054–3062. [Google Scholar]
- Zou, Q.; Wang, Y.; Wang, Q.; Zhao, Y.; Li, Q. Deep learning-based gait recognition using smartphones in the wild. IEEE Trans. Inf. Forensics Secur. 2020, 15, 3197–3212. [Google Scholar] [CrossRef]
- Hou, S.; Cao, C.; Liu, X.; Huang, Y. Gait lateral network: Learning discriminative and compact representations for gait recognition. In Computer Vision, Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2020; pp. 382–398. [Google Scholar]
- Wen, J.; Shen, Y.; Yang, J. Multi-view gait recognition based on generative adversarial network. Neural Process. Lett. 2022, 54, 1855–1877. [Google Scholar] [CrossRef]
- Ghosh, R. A Faster R-CNN and recurrent neural network based approach of gait recognition with and without carried objects. Expert Syst. Appl. 2022, 205, 117730. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. Trans. Img. Proc. 2017, 26, 3142–3155. [Google Scholar] [CrossRef]
- Shenga, H.; Cai, S.; Liu, Y.; Deng, B.; Huang, J.; Hua, X.S.; Zhao, M.J. Improving 3D Object Detection with Channel-wise Transformer. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 2723–2732. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 4–9 December 2017; Volume 2017. [Google Scholar]
- Yu, T.; Zhao, G.; Li, P.; Yu, Y. BOAT: Bilateral Local Attention Vision Transformer. In Proceedings of the British Machine Vision Conference, London, UK, 21–24 November 2022. [Google Scholar]
- Liu, K.; Wu, T.; Liu, C.; Guo, G. Dynamic Group Transformer: A General Vision Transformer Backbone with Dynamic Group Attention. arXiv 2022, arXiv:2203.03937. [Google Scholar]
- Mushtaq, H.; Deng, X.; Ali, M.; Hayat, B.; Raza Sherazi, H.H. DFA-SAT: Dynamic Feature Abstraction with Self-Attention-Based 3D Object Detection for Autonomous Driving. Sustainability 2023, 15, 13667. [Google Scholar] [CrossRef]
- Güner Şahan, P.; Şahin, S.; Kaya Gülağız, F. A survey of appearance-based approaches for human gait recognition: Techniques, challenges, and future directions. J. Supercomput. 2024, 80, 18392–18429. [Google Scholar] [CrossRef]
- Chao, H.; He, Y.; Zhang, J.; Feng, J. Gaitset: Regarding gait as a set for cross-view gait recognition. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 8126–8133. [Google Scholar]
- Fan, C.; Peng, Y.; Cao, C.; Liu, X.; Hou, S.; Chi, J.; Huang, Y.; Li, Q.; He, Z. Gaitpart: Temporal part-based model for gait recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 14225–14233. [Google Scholar]
- Peng, Y.; Ma, K.; Zhang, Y.; He, Z. Learning rich features for gait recognition by integrating skeletons and silhouettes. Multimed. Tools Appl. 2024, 83, 7273–7294. [Google Scholar] [CrossRef]
- Yu, S.; Chen, H.; Wang, Q.; Shen, L.; Huang, Y. Invariant feature extraction for gait recognition using only one uniform model. Neurocomputing 2017, 239, 81–93. [Google Scholar] [CrossRef]
- He, Y.; Zhang, J.; Shan, H.; Wang, L. Multi-task GANs for view-specific feature learning in gait recognition. IEEE Trans. Inf. Forensics Secur. 2018, 14, 102–113. [Google Scholar] [CrossRef]
- Gao, S.; Yun, J.; Zhao, Y.; Liu, L. Gait-D: Skeleton-based gait feature decomposition for gait recognition. IET Comput. Vis. 2022, 16, 111–125. [Google Scholar] [CrossRef]
- Li, X.; Makihara, Y.; Xu, C.; Yagi, Y.; Ren, M. Gait recognition via semi-supervised disentangled representation learning to identity and covariate features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 13309–13319. [Google Scholar]
- Xu, K.; Jiang, X.; Sun, T. Gait Recognition Based on Local Graphical Skeleton Descriptor With Pairwise Similarity Network. IEEE Trans. Multimed. 2022, 24, 3265–3275. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, D.; Wang, H.; Wang, X.; Yang, B.; He, B.; Liu, W.; Feng, B. Context-sensitive temporal feature learning for gait recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 12909–12918. [Google Scholar]
- Shiraga, K.; Makihara, Y.; Muramatsu, D.; Echigo, T.; Yagi, Y. GEINet: View-invariant gait recognition using a convolutional neural network. In Proceedings of the 2016 International Conference on Biometrics (ICB), Halmstad, Sweden, 13–16 June 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Li, X.; Makihara, Y.; Xu, C.; Yagi, Y.; Yu, S.; Ren, M. End-to-end model-based gait recognition. In Proceedings of the Asian Conference on Computer Vision, Kyoto, Japan, 30 November 2020. [Google Scholar]
Method | Normal#5–6 | Bag#1–2 | Coat#1–2 | Average% |
---|---|---|---|---|
SPAE [50] | 59.3 | 37.2 | 24.2 | 40.2 |
MGAN [51] | 68.1 | 54.7 | 31.5 | 51.4 |
Gaitset [47] | 92.0 | 84.3 | 62.5 | 79.6 |
Gait-D [52] | 91.6 | 79.0 | 72.0 | 80.9 |
GaitPart [48] | 96.2 | 92.4 | 78.7 | 89.1 |
GaitGL [27] | 95.9 | 92.1 | 78.2 | 88.7 |
GaitNet [53] | 91.5 | 85.7 | 58.9 | 78.7 |
GaitGraph [20] | 87.7 | 74.8 | 66.3 | 76.3 |
GaitSTAR | 97.4 | 86.7 | 68.3 | 84.13 |
Setting | Prob | Method | 0° | 18° | 36° | 54° | 72° | 90° | 108° | 126° | 144° | 162° | 180° | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ST(24) | NM#5-6 | Gaitset [47] | 64.6 | 83.3 | 90.4 | 86.5 | 80.2 | 75.5 | 80.3 | 86.0 | 87.1 | 81.4 | 59.6 | 79.5 |
MT3D [35] | 71.9 | 83.9 | 90.9 | 90.1 | 81.1 | 75.6 | 82.1 | 89.0 | 91.1 | 86.3 | 69.2 | 82.8 | ||
GaitGL [27] | 77.0 | 87.8 | 93.9 | 92.7 | 83.9 | 78.7 | 84.7 | 91.5 | 92.5 | 89.3 | 74.4 | 86.0 | ||
GaitSTAR (Ours) | 78.0 | 88.8 | 92.0 | 92.0 | 88.4 | 80.9 | 87.8 | 91.6 | 93.0 | 89.5 | 75.3 | 87.0 | ||
BG#1-2 | Gaitset [47] | 55.8 | 70.5 | 76.9 | 75.5 | 69.7 | 63.4 | 68.0 | 75.8 | 76.2 | 70.7 | 52.5 | 68.6 | |
MT3D [35] | 64.5 | 76.7 | 82.8 | 82.8 | 73.2 | 66.9 | 74.0 | 81.9 | 84.8 | 80.2 | 63.0 | 74.0 | ||
GaitGL [27] | 68.1 | 81.2 | 87.7 | 84.9 | 76.3 | 70.5 | 76.1 | 84.5 | 87.0 | 83.6 | 65.0 | 78.6 | ||
GaitSTAR | 70.8 | 82.7 | 86.9 | 87.0 | 81.7 | 75.6 | 80.3 | 86.1 | 87.8 | 84.5 | 71.0 | 81.3 | ||
CL#1-2 | Gaitset [47] | 29.4 | 43.1 | 49.5 | 48.7 | 42.3 | 40.3 | 44.9 | 47.4 | 43.0 | 35.7 | 25.6 | 40.9 | |
MT3D [35] | 46.6 | 61.6 | 66.5 | 63.3 | 57,4 | 52.1 | 58.1 | 58.9 | 58.5 | 57,4 | 41.9 | 56.6 | ||
GaitGL [27] | 46.9 | 58.7 | 66.6 | 65.4 | 58.3 | 54.1 | 59.5 | 62.7 | 61.3 | 57.1 | 40.6 | 57.4 | ||
GaitSTAR (Ours) | 51.0 | 64.2 | 68.9 | 68.7 | 63.2 | 56.2 | 62.2 | 65.4 | 63.6 | 60.7 | 48.1 | 60.6 | ||
MT(62) | NM#5-6 | Gaitset [47] | 86.8 | 95.2 | 98.0 | 94.5 | 91.5 | 89.1 | 91.1 | 95.0 | 97.4 | 93,7 | 80.2 | 92.0 |
MT3D [35] | 91.9 | 96.4 | 98.5 | 95.7 | 93.8 | 90.8 | 93.9 | 97.3 | 97.9 | 95.0 | 86.8 | 94.4 | ||
GaitGL [27] | 93.9 | 97.6 | 98.8 | 96.0 | 97.3 | 95.2 | 92.7 | 95.6 | 98.1 | 96.5 | 91.2 | 95.9 | ||
GaitSTAR (Ours) | 96.6 | 97.1 | 98.3 | 97.4 | 95.7 | 95.2 | 96.2 | 98.3 | 98.3 | 97.9 | 93.1 | 96.7 | ||
BG#1-2 | Gaitset [47] | 79.9 | 89.8 | 91.2 | 86.7 | 81.6 | 76.7 | 81.0 | 88.2 | 90.3 | 88.5 | 73.0 | 84.3 | |
MT3D [35] | 86.7 | 92.9 | 94.9 | 92.8 | 88.5 | 82.5 | 87.5 | 92.5 | 95.3 | 92.9 | 81.2 | 89.8 | ||
GaitGL [27] | 88.5 | 95.1 | 95.9 | 94.2 | 91.5 | 85.4 | 89.0 | 95.4 | 97.4 | 94.3 | 86.3 | 92.1 | ||
GaitSTAR (Ours) | 94.2 | 95.9 | 96.6 | 96.0 | 94.3 | 91.1 | 93.0 | 95.0 | 96.5 | 96.5 | 91.8 | 94.8 | ||
CL#1-2 | Gaitset [47] | 52.0 | 66.0 | 72.8 | 69.3 | 63.1 | 61.2 | 63.5 | 66.5 | 67.5 | 66.0 | 45.9 | 62.5 | |
MT3D [35] | 67.5 | 81.0 | 85.0 | 80.6 | 75.9 | 69.8 | 76.8 | 81.0 | 80.8 | 73.8 | 59.0 | 75.6 | ||
GaitGL [27] | 70.7 | 83.2 | 87.1 | 84.7 | 78.2 | 71.3 | 78.0 | 83.7 | 83.6 | 77.1 | 63.1 | 78.3 | ||
GaitSTAR (Ours) | 79.2 | 90.0 | 92.0 | 89.2 | 87.1 | 83.1 | 87.5 | 89.9 | 89.8 | 87.6 | 79.4 | 87.0 | ||
LT(74) | NM#5-6 | Gaitset [47] | 90.8 | 97.9 | 99.4 | 96.9 | 93.6 | 91.7 | 95.0 | 97.8 | 98.9 | 96.8 | 85.8 | 95.0 |
MT3D [35] | 95.7 | 98.2 | 99.0 | 97.5 | 95.1 | 93.9 | 96.1 | 98.6 | 99.2 | 98.2 | 92.0 | 96.7 | ||
GaitGL [27] | 96.0 | 98.3 | 99.0 | 97.9 | 96.9 | 95.4 | 97.0 | 98.9 | 99.3 | 98.8 | 94.0 | 97.4 | ||
GaitPart [48] | 94.1 | 98.6 | 99.3 | 98.5 | 94.0 | 92.3 | 95.9 | 98.4 | 99.2 | 97.8 | 90.4 | 96.2 | ||
MSGG [49] | 98.0 | 99.1 | 99.5 | 99.3 | 98.7 | 97.5 | 98.5 | 99.1 | 99.6 | 99.5 | 96.8 | 98.7 | ||
GaitSTAR (Ours) | 97.2 | 99.1 | 99.6 | 98.6 | 97.8 | 96.8 | 98.5 | 99.4 | 99.7 | 99.7 | 96.9 | 98.5 | ||
BG#1-2 | Gaitset [47] | 83.8 | 91.2 | 91.8 | 88.8 | 83.3 | 81.0 | 84.1 | 90.0 | 92.2 | 94.4 | 79.0 | 87.2 | |
MT3D [35] | 91.0 | 95.4 | 97.5 | 94.2 | 92.3 | 86.9 | 91.2 | 95.6 | 97.3 | 96.4 | 86.6 | 93.0 | ||
GaitGL [27] | 92.6 | 96.6 | 96.8 | 95.5 | 93.5 | 89.3 | 92.2 | 96.5 | 98.2 | 96.9 | 91.5 | 94.5 | ||
GaitPart [48] | 89.1 | 94.8 | 96.7 | 95.1 | 88.3 | 94.9 | 89.0 | 93.5 | 96.1 | 93.8 | 85.8 | 91.5 | ||
MSGG [49] | 95.8 | 97.9 | 98.2 | 97.6 | 94.4 | 91.6 | 93.9 | 96.6 | 98.5 | 98.3 | 93.1 | 96.0 | ||
GaitSTAR (Ours) | 97.2 | 97.5 | 98.4 | 98.1 | 98.4 | 96.2 | 97.5 | 98.7 | 99.5 | 99.5 | 96.9 | 98.0 | ||
CL#1-2 | Gaitset [47] | 61.4 | 75.4 | 80.7 | 77.3 | 72.1 | 70.1 | 71.5 | 73.5 | 73.5 | 68.4 | 50.0 | 70.4 | |
MT3D [35] | 76.0 | 87.6 | 89.8 | 85.0 | 81.2 | 75.7 | 81.0 | 84.5 | 85.4 | 82.2 | 68.1 | 81.5 | ||
GaitGL [27] | 76.6 | 90.0 | 90.3 | 87.1 | 84.5 | 79.0 | 84.1 | 87.0 | 87.3 | 84.4 | 69.5 | 83.6 | ||
GaitPart [48] | 70.7 | 85.5 | 86.9 | 83.3 | 77.1 | 72.5 | 76.9 | 82.2 | 83.8 | 80.2 | 66.5 | 78.7 | ||
MSGG [49] | 88.7 | 93.9 | 95.6 | 93.8 | 91.4 | 89.4 | 92.3 | 93.8 | 94.2 | 93.7 | 86.2 | 92.1 | ||
GaitSTAR (Ours) | 89.6 | 95.8 | 96.8 | 94.4 | 92.0 | 91.0 | 93.1 | 93.8 | 93.5 | 92.3 | 87.5 | 92.7 |
Training Sample | Method | Fast | Slow | Bag | Average% |
---|---|---|---|---|---|
24 | LGSD + PSN [54] | 58.6 | 56.0 | 38.1 | 50.9 |
GaitSTAR | 65.3 | 56.4 | 40.7 | 54.1 | |
62 | LGSD + PSN [54] | 63.6 | 60.0 | 42.3 | 55.3 |
GaitSTAR | 71.5 | 59.1 | 44.6 | 58.4 | |
100 | LGSD + PSN [54] | 71.7 | 71.0 | 50.5 | 64.4 |
GaitSTAR | 77.4 | 71.2 | 52.3 | 67.3 |
Method | R-1 (%) | R-5 (%) | mAP (%) | mINP |
---|---|---|---|---|
GEINet [56] | 7.00 | 16.30 | 6.05 | 3.77 |
Gaitset [47] | 42.60 | 63.10 | 33.69 | 19.69 |
GaitPart [48] | 29.90 | 50.60 | 23.34 | 13.15 |
GLN [37] | 42.20 | 64.50 | 33.14 | 19.56 |
GaitGL [27] | 23.50 | 38.50 | 16.40 | 9.20 |
CSTL [55] | 12.20 | 21.70 | 6.44 | 3.28 |
PoseGait [57] | 0.24 | 1.08 | 0.47 | 0.34 |
GaitGraph [20] | 6.25 | 16.23 | 5.18 | 2.42 |
SMPLGait [33] | 53.20 | 71.00 | 42.43 | 25.97 |
GaitSTAR (Ours) | 54.21 | 72.76 | 44.15 | 27.07 |
Representation | Permutation-Invariant Function | Results | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
GEI | DSFR | FST | Max | Mean | Median | Temp-Att | DFR | NM | BG | CL |
✓ | 76.9 | 64.6 | 32.3 | |||||||
✓ | ✓ | ✓ | 94.1 | 85.5 | 62.7 | |||||
✓ | ✓ | ✓ | 96.9 | 86.0 | 66.6 | |||||
✓ | ✓ | 94.6 | 82.8 | 65.2 | ||||||
✓ | ✓ | ✓ | 92.6 | 84.3 | 62.5 | |||||
✓ | ✓ | ✓ | 87.0 | 75.7 | 48.8 | |||||
✓ | ✓ | ✓ | 86.6 | 75.3 | 41.6 | |||||
✓ | ✓ | ✓ | 92.3 | 83.8 | 63.5 |
Probe | Model | 0° | 18° | 36° | 54° | 72° | 90° | 108° | 126° | 144° | 162° | 180° | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NM#5-6 | SD | 95.1 | 97.8 | 99.3 | 97.6 | 96.3 | 94.8 | 96.9 | 99.0 | 99.1 | 98.7 | 91.3 | 96.9 |
ST | 96.4 | 98.9 | 99.6 | 99.2 | 99.2 | 97.9 | 99.1 | 100.0 | 99.9 | 99.1 | 96.5 | 98.7 | |
SD + AR | 96.1 | 97.5 | 98.4 | 98.1 | 97.3 | 96.9 | 97.5 | 98.0 | 98.5 | 98.4 | 94.9 | 97.4 | |
ST + AR | 97.2 | 99.1 | 99.6 | 98.6 | 97.8 | 96.8 | 98.5 | 99.4 | 99.7 | 99.7 | 96.9 | 98.5 | |
BG#1-2 | SD | 90.8 | 95.2 | 96.4 | 94.5 | 92.4 | 86.9 | 91.0 | 95.0 | 97.7 | 96.8 | 87.6 | 93.2 |
ST | 95.7 | 97.0 | 99.0 | 99.4 | 97.4 | 93.5 | 95.0 | 97.6 | 99.1 | 98.8 | 95.5 | 97.1 | |
SD + AR | 95.1 | 94.7 | 95.7 | 95.5 | 94.4 | 92.9 | 95.1 | 95.8 | 96.6 | 96.1 | 92.9 | 95.0 | |
ST + AR | 97.2 | 97.5 | 98.4 | 98.1 | 98.4 | 96.2 | 97.5 | 98.7 | 99.5 | 99.5 | 96.9 | 98.0 | |
CL#1-2 | SD | 77.2 | 88.8 | 91.2 | 87.1 | 83.2 | 78.1 | 84.0 | 87.0 | 88.6 | 83.7 | 69.2 | 83.5 |
ST | 76.5 | 85.0 | 84.5 | 85.6 | 85.6 | 84.3 | 85.5 | 87.5 | 85.6 | 84.8 | 76.5 | 83.8 | |
SD + AR | 85.1 | 91.2 | 92.1 | 90.2 | 87.0 | 84.6 | 88.4 | 89.3 | 90.4 | 87.2 | 80.5 | 87.8 | |
ST + AR | 89.6 | 95.8 | 96.7 | 94.4 | 92.0 | 91.0 | 92.0 | 93.8 | 93.5 | 92.3 | 87.5 | 92.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilal, M.; Jianbiao, H.; Mushtaq, H.; Asim, M.; Ali, G.; ElAffendi, M. GaitSTAR: Spatial–Temporal Attention-Based Feature-Reweighting Architecture for Human Gait Recognition. Mathematics 2024, 12, 2458. https://doi.org/10.3390/math12162458
Bilal M, Jianbiao H, Mushtaq H, Asim M, Ali G, ElAffendi M. GaitSTAR: Spatial–Temporal Attention-Based Feature-Reweighting Architecture for Human Gait Recognition. Mathematics. 2024; 12(16):2458. https://doi.org/10.3390/math12162458
Chicago/Turabian StyleBilal, Muhammad, He Jianbiao, Husnain Mushtaq, Muhammad Asim, Gauhar Ali, and Mohammed ElAffendi. 2024. "GaitSTAR: Spatial–Temporal Attention-Based Feature-Reweighting Architecture for Human Gait Recognition" Mathematics 12, no. 16: 2458. https://doi.org/10.3390/math12162458
APA StyleBilal, M., Jianbiao, H., Mushtaq, H., Asim, M., Ali, G., & ElAffendi, M. (2024). GaitSTAR: Spatial–Temporal Attention-Based Feature-Reweighting Architecture for Human Gait Recognition. Mathematics, 12(16), 2458. https://doi.org/10.3390/math12162458