A Linear Composition Operator on the Bloch Space
Abstract
:1. Introduction
2. Boundedness of
- (i)
- ,
- (ii)
- ,
- (a)
- The operator is bounded.
- (b)
- for each Here,
- (c)
3. Essential Norm of
- (i)
- For any , , .
- (ii)
- (iii)
- , for the above s.
- (iv)
- .
- (a)
- The operator is compact.
- (b)
- for
- (c)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cowen, C.; Maccluer, B. Composition Operators on Spaces of Analytic Functions; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Zhu, K. Operator Theory in Function Spaces; American Mathematical Society: Providence, RI, USA, 2007. [Google Scholar]
- Zhu, X. Products of differentiation, composition and multiplication from Bergman type spaces to Bers type space. Integral Transform. Spec. Funct. 2007, 18, 223–231. [Google Scholar] [CrossRef]
- Stević, S. Weighted differentiation composition operators from the mixed-norm space to the n-th weigthed-type space on the unit disk. Abstr. Appl. Anal. 2010, 2010, 246287. [Google Scholar] [CrossRef]
- Stević, S. Weighted differentiation composition operators from H∞ and Bloch spaces to n-th weighted-type spaces on the unit disk. Appl. Math. Comput. 2010, 216, 3634–3641. [Google Scholar]
- Zhu, X. Generalized weighted composition operators on Bloch-type spaces. J. Inequal. Appl. 2015, 2015, 59–68. [Google Scholar] [CrossRef]
- Zhu, X. Essential norm of generalized weighted composition operators on Bloch-type spaces. Appl. Math. Comput. 2016, 274, 133–142. [Google Scholar] [CrossRef]
- Stević, S.; Sharma, A.; Krishan, R. Boundedness and compactness of a new product-type operator from a general space to Bloch-type spaces. J. Inequal. Appl. 2016, 2016, 219. [Google Scholar] [CrossRef]
- Stević, S.; Ueki, S. Polynomial differentiation composition operators from Hp spaces to weighted-type spaces on the unit ball. J. Math. Inequal. 2023, 17, 365–379. [Google Scholar] [CrossRef]
- Wang, S.; Wang, M.; Guo, X. Products of composition, multiplication and iterated differentiation operators between Banach spaces of holomorphic functions. Taiwan J. Math. 2020, 24, 355–376. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, A. Boundedness, compactness and the Hyers–Ulam stability of a linear combination of differential operators. Complex Anal. Oper. Theory 2020, 14, 14. [Google Scholar]
- Madigan, K.; Matheson, A. Compact composition operators on the Bloch space. Trans. Amer. Math. Soc. 1995, 347, 2679–2687. [Google Scholar] [CrossRef]
- Tjani, M. Compact Composition Operators on Some Möbius Invariant Banach Space. Ph.D. Dissertation, Michigan State University, East Lansing, MI, USA, 1996. [Google Scholar]
- Wulan, H.; Zheng, D.; Zhu, K. Compact composition operators on BMOA and the Bloch space. Proc. Am. Math. Soc. 2009, 137, 3861–3868. [Google Scholar] [CrossRef]
- Montes-Rodríguez, A. The essential norm of a composition operator on Bloch spaces. Pac. J. Math. 1999, 188, 339–351. [Google Scholar] [CrossRef]
- Zhao, R. Essential norms of composition operators between Bloch type spaces. Proc. Am. Math. Soc. 2010, 138, 2537–2546. [Google Scholar] [CrossRef]
- Li, S. Differences of generalized composition operators on the Bloch space. J. Math. Anal. Appl. 2012, 394, 706–711. [Google Scholar] [CrossRef]
- Ohno, S. Weighted composition operators between H∞ and the Bloch space. Taiwan J. Math. 2001, 5, 555–563. [Google Scholar] [CrossRef]
- Colonna, F. New criteria for boundedness and compactness of weighted composition operators mapping into the Bloch space. Cent. Eur. J. Math. 2013, 11, 55–73. [Google Scholar] [CrossRef]
- Hyvärinen, O.; Lindström, M. Estimates of essential norm of weighted composition operators between Bloch-type spaces. J. Math. Anal. Appl. 2012, 393, 38–44. [Google Scholar] [CrossRef]
- Liu, X.; Li, S. Norm and essential norm of a weighted composition operator on the Bloch space. Integral Equ. Oper. Theory 2017, 87, 309–325. [Google Scholar] [CrossRef]
- Manhas, J.; Zhao, R. New estimates of essential norms of weighted composition operators between Bloch type spaces. J. Math. Anal. Appl. 2012, 389, 32–47. [Google Scholar] [CrossRef]
- Ohno, S.; Stroethoff, K.; Zhao, R. Weighted composition operators between Bloch-type spaces. Rocky Mt. J. Math. 2003, 33, 191–215. [Google Scholar] [CrossRef]
- Ohno, S.; Zhao, R. Weighted composition operators on the Bloch space. Bull. Austral. Math. Soc. 2001, 63, 177–185. [Google Scholar] [CrossRef]
- Hyvärinen, O.; Kemppainen, M.; Lindström, M.; Rautio, A.; Saukko, E. The essential norm of weighted composition operators on weighted Banach spaces of analytic functions. Integral Equ. Oper. Theory 2012, 72, 151–157. [Google Scholar]
- Montes-Rodríguez, A. Weighed composition operators on weighted Banach spaces of analytic functions. J. Lond. Math. Soc. 2000, 61, 872–884. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Hu, Q. A Linear Composition Operator on the Bloch Space. Mathematics 2024, 12, 2373. https://doi.org/10.3390/math12152373
Zhu X, Hu Q. A Linear Composition Operator on the Bloch Space. Mathematics. 2024; 12(15):2373. https://doi.org/10.3390/math12152373
Chicago/Turabian StyleZhu, Xiangling, and Qinghua Hu. 2024. "A Linear Composition Operator on the Bloch Space" Mathematics 12, no. 15: 2373. https://doi.org/10.3390/math12152373
APA StyleZhu, X., & Hu, Q. (2024). A Linear Composition Operator on the Bloch Space. Mathematics, 12(15), 2373. https://doi.org/10.3390/math12152373