Liu, Z.; El-Sousy, F.F.M.; Larik, N.A.; Quan, H.; Ji, T.
Riemannian Geodesic Discriminant Analysis–Minimum Riemannian Mean Distance: A Robust and Effective Method Leveraging a Symmetric Positive Definite Manifold and Discriminant Algorithm for Image Set Classification. Mathematics 2024, 12, 2164.
https://doi.org/10.3390/math12142164
AMA Style
Liu Z, El-Sousy FFM, Larik NA, Quan H, Ji T.
Riemannian Geodesic Discriminant Analysis–Minimum Riemannian Mean Distance: A Robust and Effective Method Leveraging a Symmetric Positive Definite Manifold and Discriminant Algorithm for Image Set Classification. Mathematics. 2024; 12(14):2164.
https://doi.org/10.3390/math12142164
Chicago/Turabian Style
Liu, Zigang, Fayez F. M. El-Sousy, Nauman Ali Larik, Huan Quan, and Tianyao Ji.
2024. "Riemannian Geodesic Discriminant Analysis–Minimum Riemannian Mean Distance: A Robust and Effective Method Leveraging a Symmetric Positive Definite Manifold and Discriminant Algorithm for Image Set Classification" Mathematics 12, no. 14: 2164.
https://doi.org/10.3390/math12142164
APA Style
Liu, Z., El-Sousy, F. F. M., Larik, N. A., Quan, H., & Ji, T.
(2024). Riemannian Geodesic Discriminant Analysis–Minimum Riemannian Mean Distance: A Robust and Effective Method Leveraging a Symmetric Positive Definite Manifold and Discriminant Algorithm for Image Set Classification. Mathematics, 12(14), 2164.
https://doi.org/10.3390/math12142164