A Fuzzy-Based Approach for Flexible Modeling and Management of Freshwater Fish Farming
Abstract
:1. Introduction
2. Challenges of Fish Farming
3. Related Works
4. The Proposed Fuzzy-Based Approach for Modeling Fish Farming
4.1. Preparation and Prediction of WQ Parameters
Algorithm 1. Weight-based WQ parameter value prediction. |
input: Historical WQ parameters of the considered set of sites of last N years. output: Predicted WQ parameters values of the next year . begin: let ; // P is used for the weighting years in the prediction process let m = |N|+1; // |N| is the cardinality of the set of years for each year Yi in N // Compute the prediction weight of year : ; end for for each day Di in the next year Ym ()=; ()=; ()=; end for end Algorithm 1. |
4.2. Defining the Suitability FMFs for Each Fish Type
4.2.1. Defining PH and Temp Suitable FMFs
- PH degrees in [] are the most suitable values with full membership of 1.
- PH degrees in the right-side opened interval [) and left-side opened interval ] are partially suitable PH values with membership values in [0, 1).
- PH degrees greater than or less than are not suitable at all, with a membership value of 0.
- Temp degrees in [] are suitable, with full membership of 1.
- Temp degrees in [, p) and ] are partially suitable temperature values, with membership values in [0, 1).
- Temp degrees greater than or less than are not suitable at all, with a membership value of 0.
4.2.2. Defining the DO Suitable FMF
- DO greater than or equal is wholly suitable, with a full membership value of 1.
- DO degrees in [, ) are partially suitable, with membership values in [0, 1).
- DO degree less than are not suitable DO values, with a 0 membership value.
4.3. Fuzzy Evaluation of Fish Farming Sites’ Suitability
Algorithm 2. Fuzzy evaluation of sites’ suitability for fish farming |
Inputs: a set of sites S, a set of fish F, WQ parameters of sites, each fish type requirements of WQ parameters, accepted threshold for suitability membership function. Outputs: an array Suitability[S][F] storing the suitability degree of each site ∈ S for farming each fish type ∈ F. begin Suitability [|S|][|F|] = 0; or each site in S for each fish in F // compute the suitability of PH, DO and Temp ; ; ; // compute and store the overall suitability of site for farming fish type ; end for end for end Algorithm 2. |
4.4. Suitability-Based Fuzzy Clustering of Consecutive Sites
Algorithm 3. Suitability-based fuzzy clustering of consecutive sets of sites |
struct clustNode{clustId, fromSite, toSite, clustType; float avgSuit; node *next;}; clustNode sitesClusters[]; int newFlag, clustId, clustType, fId, sId, firstSite, lastSite, sitesCount; float , avgSuit, augSuit; for each fish type f with fish id fId in the set of fish types F { newFlag = 1; clustType = 1; clusId = 0; // Clusters sites respecting their suitability for farming each fish type for each water site s identified by sId in the set of water sites S { // evaluate the suitability of farming fish type f at site s if ((newFlag==1) or ( and clustType == 0) or ( and clustType ==1)) then { sitesCount = 1; clustId++; augSuit = avgSuit = ; firstSite = lastSite = sId; clustType = (clustType==1)? 0 : 1; sitesClusters[fid].addNew(clusId, firstSite, lastSite, avgSuit, clustType); newFlag = 0;} else { augSuit+=sSuit; sitesCount++; avgSuit= augSuit/sitesCount; lastSite = sId; sitesClusters[fid].update(clusId, lastSite, avgSuit);} end if; } end for sitesClusters[fId].display();} end for return sitesClusters[]; end Algorithm 3. |
4.5. Required Enhancement for Unsuitable Sites
5. An Illustrative Case Study
5.1. Prediction of WQ Parameter Values
5.2. Defining Fish Farming Requirements
- The control point “” indicates 0 suitability for any PH value less than or equal to it;
- In contrast, any value of PH belonging to the closed period [] has a full suitability degree for farming fish type ;
- The control point “” indicates 0 suitability for PH values greater than or equal to it;
- Any PH value belonging to [,) or (] has a partial suitability degree in [0, 1) for farming fish type , which is computed using Equation (1).
- The control point “” indicates 0 suitability for DO values less than or equal to it;
- In contrast, any value of DO greater than or equal to has a full suitability degree for farming fish type ;
- Any value of DO belonging to the opened period [,) has a partial suitability degree in [0, 1] for farming fish type , which is computed using Equation (2).
5.3. Fuzzy-Based Evaluation of Sites for Fish Farming
5.4. Suitability-Based Water Site Clustering with Respect to a Fish Type
- Best fit clusters include {(S1:S2, 1), (S7, 0.98), (S9:S13, 1), (S15:S19, 0.99), (S21, 1), (S23, 0.9)}. They are ideally suitable for the farming process of “Shrimp” fish type.
- Good clusters include {(S3:S4, 0.82), (S14, 0.76), (S22, 0.78), (S26, 0.81)}. They need little enhancements in their water quality parameters to reach the threshold value.
- Bad clusters include one site {(S28, 0.66)} that needs great enhancements in WQ.
- Unfit clusters include {(S5:S6, 0.025), (S8, 0.52), (S20, 0.01), (S24:S25, 0.21), (S27, 0.1)}. These clusters are unsuitable at all for farming “Shrimp”.
5.5. Required Enhancements of Unsuitable Sites for Fish Farming
5.6. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Araujo, G.S.; da Silva, J.W.A.; Cotas, J.; Pereira, L. Fish Farming Techniques: Current Situation and Trends. J. Mar. Sci. Eng. 2022, 10, 1598. [Google Scholar] [CrossRef]
- Raman, B.V.; Bouwmeester, R.; Mohan, S. Fuzzy Logic Water Quality Index and Importance of Water Quality Parameters. Air Soil Water Res. 2009, 2, 51–59. [Google Scholar] [CrossRef]
- Xu, T.; Chen, F. An Embedded Fuzzy Decision System for Aquaculture. In Proceedings of the 2014 IEEE Workshop on Electronics, Computer and Applications, Ottawa, ON, Canada, 8–9 May 2014; pp. 351–353. [Google Scholar]
- Sampuangthong, K.; Kiattisin, S.; Leelasantitham, A. Evaluation Levels of Water Quality in Maeklong Basin Using Fuzzy Logic. In Proceedings of the 7th 2014 Biomedical Engineering International Conference (BMEiCON), Fukuoka, Japan, 26–28 November 2014. [Google Scholar]
- Zaprudnova, R.A.; Kamshilov, I.M.; Chalov, Y.P. Functional Properties of Hemoglobin during the Adaptation of Fish to Low Environmental Ph. Inland Water Biol. 2015, 8, 188–194. [Google Scholar] [CrossRef]
- Sabour, A.A.; Gadallah, A.M.; Hefny, H.A. Flexible Querying of Relational Databases: Fuzzy Set Based Approach. In Proceedings of the Advanced Machine Learning Technologies and Applications: Second International Conference, AMLTA, Cairo, Egypt, 28–30 November 2014; Hassanien, A.E., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 446–455. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Bezdek, V. Possible Use of Fuzzy Logic in Database. J. Syst. Integr. 2011, 2, 31–46. [Google Scholar] [CrossRef]
- Mohammed, A.H.; Gadallah, A.M.; Hefny, H.A. Fuzzy based approach for discovering crops plantation knowledge from huge agro-climatic data respecting climate changes. Computing 2018, 100, 689–713. [Google Scholar] [CrossRef]
- Islam, M.M.; Kashem, M.A.; Alyami, S.A.; Moni, M.A. Monitoring water quality metrics of ponds with IoT sensors and machine learning to predict fish species survival. Microprocess. Microsyst. 2023, 102, 104930. [Google Scholar] [CrossRef]
- Ezeanya, N.C.; Chukwuma, G.O.; Nwaigwe, K.N.; Egwuonwu, C.C. Standard Water Quality Requirements and Management Strategies for Fish Farming (A Case Study of Otamiri River). Int. J. Res. Eng. Technol. 2015, 4, 1–5. [Google Scholar]
- Ibrahim, T.S.T.; Workneh, T.S. The environmental impact of the sugar industry waste in Sudan. Environ. Monit. Assess. 2023, 195, 870. [Google Scholar] [CrossRef] [PubMed]
- Klir, G.J.; Yuan, B. Fuzzy Sets and Fuzzy Logic Theory and Applications; Prentice Hall: Upper Saddle River, NJ, USA, 1995. [Google Scholar]
- Hidayah, S.N.; Tahir, N.; Rusop, M.; Rizam, S. Development of Fuzzy Fish Pond Water Quality Model. In Proceedings of the 2011 IEEE Colloquium on Humanities, Science and Engineering, Penang, Malaysia, 5–6 December 2011; pp. 556–561. [Google Scholar]
- Kateriya, B.; Tiwari, R. River Water Quality Analysis and Treatment Using Soft Computing Technique: A Survey. In Proceedings of the IEEE International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 7–9 January 2016. [Google Scholar]
- Rana, D.S.; Rani, S. Fuzzy Logic Based Control System for Fresh Water Aquaculture: A MATLAB based Simulation Approach. Serbian J. Electr. Eng. 2015, 12, 171–182. [Google Scholar] [CrossRef]
- Yalcuk, A.; Postalcioglu, S. Evaluation of pool water quality of trout farms by fuzzy logic: Monitoring of pool water quality for trout farms. Int. J. Environ. Sci. Technol. 2015, 12, 1503–1514. [Google Scholar] [CrossRef]
- Huang, H.; Jia, X.; Lin, Q.; Guo, G.; Liu, Y. Application of Adaptive Neuro-fuzzy Inference System to Carrying Capacity Assessment for Cage Fish Farm in Daya Bay, China. In Proceedings of the 2010 IEEE Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Yantai, China, 10–12 August 2010; pp. 815–818. [Google Scholar]
- Khatua, A.; Jana, S.; Kar, T.K. A fuzzy rule-based model to assess the effects of global warming, pollution and harvesting on the production of Hilsa fishes. Ecol. Inform. 2020, 57, 101070. [Google Scholar] [CrossRef]
- Kasoz, N.; Opi, H.; Iwe, G.; Enima, C.; Nkambo, M.; Turyashemererwa, M.; Naluwayiro, J.; Sadik, K. Site suitability assessment of selected bays along the Albert Nile for Cage Aquaculture in West Nile region of Uganda. Int. J. Fish. Aquac. 2016, 8, 87–93. [Google Scholar]
- Lv, H.; Zhou, F. Identification of the Yancheng Region Water Quality Using GIS and Fuzzy Synthetic Evaluation Approach. In Proceedings of the 23rd International Conference on Geoinformatics, Wuhan, China, 19–21 June 2015. [Google Scholar]
- Salama, A.J.; Satheesh, S.; Balqadi, A.A.; Kitto, M.R. Identifying Suitable Fin Fish Cage Farming Sites in the Eastern Red Sea Coast, Saudi Arabia. Thalass. Int. J. Mar. Sci. 2016, 32, 1–9. [Google Scholar] [CrossRef]
- Abdel-Hady, M.M.; El-karashily, A.F.; Salem, A.M. Sustainable fish production in Egypt: Towards strategic management for capture-based aquaculture. Aquacult. Int. 2024. Available online: https://link.springer.com/article/10.1007/s10499-024-01470-y (accessed on 10 April 2024).
- Backhaus, K.; Erichson, B.; Gensler, S.; Weiber, R.; Weiber, T. Cluster Analysis. In Multivariate Analysis; Springer Gabler: Wiesbaden, Germany, 2021. [Google Scholar] [CrossRef]
- Romera, J.M.; Gutiérrez, J.G.; Ballesteros, M.M.; Santos, J.R. An approach to validity indices for clustering techniques in Big Data. In Progress in Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Wang, X.; Chen, Y.; Jin, J. Fuzzy-clustering and fuzzy network based interpretable fuzzy model for prediction. Sci. Rep. 2022, 12, 16279. [Google Scholar] [CrossRef] [PubMed]
- Cabi.org. Aquatic Species, Oreochromis aureus (Blue Tilapia). Available online: https://www.cabi.org/isc/datasheet/72068 (accessed on 9 February 2017).
- El-Sayed, A.-F.M. Tilapia Culture; Oceanography Department, Faculty of Science, Alexandria University: Alexandria, Egypt, 2006; pp. 34–44. [Google Scholar]
- GAFRD (General Authority for Fish Resources Development). Tilapia Species. 2010. Available online: http://www.gafrd.org/posts/115479?re=829135 (accessed on 11 December 2023).
- Hamza, W. Agricultural and Biological Sciences. In The Nile Fishes and Fisheries; IntechOpen: London, UK, 2014; Available online: https://www.intechopen.com/books/biodiversity-the-dynamic-balance-of-the-planet/the-nile-fishes-and-fisheries (accessed on 2 November 2022).
- Yovita, D. The Effects of Dissolved Oxygen on Fish Growth in Aquaculture; Kingolwira National Fish Farming Centre, Fisheries Division Ministry of Natural Resources and Tourism: Morogoro, Tanzania, 2007. [Google Scholar]
- Sun, L.; Wang, B.; Yang, P.; Wang, X.; Li, D.; Wang, J. Water quality parameter analysis model based on fish behavior. Comput. Electron. Agric. 2022, 203, 107500, ISSN 0168-1699. [CrossRef]
- Abd Alziz, M.A. The pollution of the River Nile in the city of Edfu and its destructive effect on the life forms in the region using GIS. Geopolit. Hist. Int. Relat. 2013, 5, 222–239. Available online: https://link.gale.com/apps/doc/A353753666/AONE?u=anon~4a4a0698&sid=googleScholar&xid=ab7bf0c3 (accessed on 1 May 2024).
- Abdel-Satar, A.M.; Ali, M.H.; Goher, M.E. Indices of water quality and metal pollution of Nile River, Egypt. Egypt. J. Aquat. Res. 2017, 43, 21–29. [Google Scholar] [CrossRef]
- Ali Mahmoud Muhammad, S. Human Ecosystems at Kom Ambo District: Study of Environmental Geography. J. Fac. Arts Qena South Val. Univ. 2022, 31, 1265–1298. [Google Scholar] [CrossRef]
Considered WQ Parameters | Trapezoidal FMF Control Points | |||
---|---|---|---|---|
PH | 4 | 6 | 8.6 | 10.6 |
Temp | 12 | 22 | 30 | 40 |
Site Name | Site Id | Latitude (N) | Longitude (E) | (Mg/L) | (°C) | |
---|---|---|---|---|---|---|
Nasser Lake1 | S1 | 22°15 | 31°50 | 7.62 | 7.09 | 27.32 |
Nasser Lake2 | S2 | 22°45 | 32°40 | 7.28 | 6.29 | 26.88 |
Nasser Lake3 | S3 | 23°30 | 32°50 | 8.37 | 5.78 | 26.46 |
Aswan | S4 | 24°14 | 32°52 | 7.93 | 5.24 | 26.25 |
Kom Ombo | S5 | 24°49 | 32°54 | 5.03 | 3.44 | 24.92 |
Edfu | S6 | 25°11 | 32°42 | 6.39 | 4.07 | 24.38 |
Esna | S7 | 25°25 | 32°32 | 6.76 | 5.48 | 21.40 |
Luxor | S8 | 25°42 | 32°38 | 6.84 | 4.78 | 24.10 |
Qena | S9 | 26°08 | 32°42 | 7.63 | 6.69 | 23.36 |
Girga | S10 | 26°20 | 31°54 | 6.48 | 6.24 | 20.30 |
Sohag | S11 | 26°33 | 31°42 | 6.99 | 6.29 | 23.89 |
Tima | S12 | 26°55 | 31°27 | 6.33 | 6.05 | 21.63 |
Asyut | S13 | 27°11 | 31°11 | 6.81 | 7.21 | 21.10 |
Abnub | S14 | 27°15 | 31°07 | 5.52 | 6.74 | 22.38 |
Mallawi | S15 | 27°44 | 30°51 | 6.55 | 6.42 | 21.19 |
El Minya | S16 | 28°05 | 30°46 | 6.94 | 6.24 | 20.93 |
Samalut | S17 | 28°18 | 30°44 | 6.98 | 5.84 | 21.66 |
Beni Suef | S18 | 29°03 | 31°06 | 7.34 | 5.78 | 21.62 |
Atfih | S19 | 29°24 | 31°13 | 5.95 | 6.35 | 20.46 |
Helwan | S20 | 29°50 | 31°17 | 7.36 | 4.02 | 20.54 |
Giza | S21 | 30°02 | 31°13 | 7.01 | 5.91 | 21.72 |
Menuf | S22 | 30°28 | 30°50 | 7.47 | 5.16 | 23.94 |
Kafrzayat | S23 | 30°49 | 30°48 | 6.40 | 5.35 | 21.52 |
Desouk | S24 | 31°07 | 30°38 | 7.11 | 4.63 | 20.64 |
Banha | S25 | 30°28 | 31°10 | 6.73 | 3.89 | 22.76 |
Zefta | S26 | 30°42 | 31°14 | 6.68 | 5.21 | 24.20 |
Mansura | S27 | 31°02 | 31°23 | 5.89 | 4.16 | 20.13 |
Domietta | S28 | 31°24 | 31°48 | 7.66 | 4.99 | 19.42 |
Fish ID | Fish Type Name | Fish Image | PH (0–14) | DO Mg/L | Temp °C | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Optimum | Optimum | |||||||||||
F1 | Shrimp | 4 | 6 | 8 | 10 | 4 | 5.5 | 15 | 20 | 30 | 38 | |
F2 | African Sharp Tooth Catfish | 4 | 6 | 9 | 12 | 3 | 5.3 | 10 | 23 | 28 | 39 | |
F3 | Anguilla | 5 | 7.4 | 8 | 10 | 2.8 | 5 | 9 | 23 | 30 | 39 | |
F4 | Fresh Water Sardines | 3.3 | 5 | 6.8 | 8.5 | 3.8 | 5 | 10 | 15 | 22 | 33 | |
F5 | Sharp Tooth Catfish | 4 | 6.5 | 8 | 12 | 4 | 6 | 9 | 20 | 30 | 40 | |
F6 | Electric Catfish | 4.5 | 7 | 8 | 12 | 2.9 | 4 | 11 | 23 | 30 | 39 | |
F7 | Bagrus Docmac | 4.4 | 6.4 | 8.2 | 10 | 3 | 4.5 | 10 | 21 | 27 | 38 | |
F8 | Lates Niloticus | 3.7 | 6.2 | 8.5 | 10.2 | 3 | 4 | 11 | 21 | 27 | 37 | |
F9 | Bottle Nose | 3.5 | 5.5 | 8 | 10 | 3.5 | 5 | 13 | 23 | 30 | 38 | |
F10 | Hypoph Thalmichthys | 3.5 | 5.5 | 7.5 | 9.5 | 2.5 | 4 | 13 | 20 | 24 | 33 | |
F11 | Barbus Bynni | 4 | 6 | 8 | 10 | 2.7 | 4 | 10 | 22 | 27 | 35 | |
F12 | Nile Lebeo | 5 | 7 | 8.5 | 10.5 | 4 | 6 | 10 | 22 | 28 | 38 | |
F13 | Grass Carp | 4 | 6 | 8.6 | 10.4 | 4 | 6 | 12 | 22 | 30 | 40 | |
F14 | Tilabia Zillii | 3 | 5 | 7.5 | 9 | 3.8 | 5.5 | 12 | 19 | 28 | 38 | |
F15 | Tilabia Galilea | 3 | 5 | 8.4 | 10 | 4 | 6 | 15 | 20 | 30 | 38 | |
F16 | Tilabia Aurea | 3.7 | 5 | 8 | 11 | 3 | 6 | 14 | 19 | 30 | 38 | |
F17 | Tilabia Niletica | 3.5 | 5 | 8.2 | 10.5 | 3.5 | 6 | 15 | 20 | 30 | 38 |
Fish Id | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15 | F16 | F17 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Site Id | ||||||||||||||||||
S1 | 1 | 1 | 1 | 0.52 | 1 | 1 | 0.97 | 0.97 | 1 | 0.63 | 0.96 | 1 | 1 | 0.92 | 1 | 1 | 1 | |
S2 | 1 | 1 | 0.95 | 0.56 | 1 | 1 | 1 | 1 | 1 | 0.68 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
S3 | 0.82 | 1 | 0.82 | 0.08 | 0.89 | 0.91 | 0.91 | 1 | 0.82 | 0.57 | 0.82 | 0.89 | 0.89 | 0.42 | 0.89 | 0.88 | 0.91 | |
S4 | 0.82 | 0.97 | 1 | 0.34 | 0.62 | 1 | 1 | 1 | 1 | 0.75 | 1 | 0.62 | 0.62 | 0.72 | 0.62 | 0.75 | 0.69 | |
S5 | 0.00 | 0.19 | 0.01 | 0.73 | 0.00 | 0.21 | 0.30 | 0.44 | 0.00 | 0.63 | 0.57 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 | 0.00 | |
S6 | 0.05 | 0.46 | 0.58 | 0.23 | 0.03 | 0.76 | 0.71 | 1 | 0.38 | 0.96 | 1 | 0.03 | 0.04 | 0.16 | 0.03 | 0.36 | 0.23 | |
S7 | 0.98 | 0.88 | 0.73 | 1 | 0.74 | 0.87 | 1 | 1 | 0.84 | 1 | 0.95 | 0.74 | 0.74 | 0.99 | 0.74 | 0.83 | 0.79 | |
S8 | 0.52 | 0.77 | 0.77 | 0.81 | 0.39 | 0.94 | 1 | 1 | 0.85 | 0.99 | 1 | 0.39 | 0.39 | 0.57 | 0.39 | 0.59 | 0.51 | |
S9 | 1 | 1 | 1 | 0.51 | 1 | 1 | 1 | 1 | 1 | 0.93 | 1 | 1 | 1 | 0.91 | 1 | 1 | 1 | |
S10 | 1 | 0.79 | 0.62 | 1 | 0.99 | 0.77 | 0.94 | 0.93 | 0.73 | 1 | 0.86 | 0.81 | 0.83 | 1 | 1 | 1 | 1 | |
S11 | 1 | 1 | 0.83 | 0.83 | 1 | 1.00 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
S12 | 1 | 0.89 | 0.55 | 1 | 0.93 | 0.73 | 0.96 | 1 | 0.86 | 1 | 0.97 | 0.76 | 0.96 | 1 | 1 | 1 | 1 | |
S13 | 1 | 0.85 | 0.75 | 0.99 | 1 | 0.84 | 1 | 1 | 0.81 | 1 | 0.92 | 0.92 | 0.91 | 1 | 1 | 1 | 1 | |
S14 | 0.76 | 0.76 | 0.22 | 0.97 | 0.61 | 0.41 | 0.56 | 0.69 | 0.94 | 1 | 0.81 | 0.47 | 1 | 1 | 1 | 1 | 1 | |
S15 | 1 | 0.86 | 0.65 | 1 | 1 | 0.82 | 1 | 1 | 0.82 | 1 | 0.93 | 0.84 | 0.92 | 1 | 1 | 1 | 1 | |
S16 | 1 | 0.84 | 0.81 | 0.92 | 1 | 0.83 | 0.99 | 0.99 | 0.79 | 1 | 0.91 | 0.91 | 0.89 | 1 | 1 | 1 | 1 | |
S17 | 1 | 0.90 | 0.83 | 0.89 | 0.92 | 0.89 | 1 | 1 | 0.87 | 1 | 0.97 | 0.92 | 0.92 | 1 | 0.92 | 0.95 | 0.94 | |
S18 | 1 | 0.89 | 0.90 | 0.68 | 0.89 | 0.89 | 1 | 1 | 0.86 | 1 | 0.97 | 0.89 | 0.89 | 1 | 0.89 | 0.93 | 0.91 | |
S19 | 0.97 | 0.80 | 0.40 | 1 | 0.78 | 0.58 | 0.77 | 0.89 | 0.75 | 1 | 0.87 | 0.62 | 0.85 | 1 | 1 | 1 | 1 | |
S20 | 0.01 | 0.44 | 0.55 | 0.18 | 0.01 | 0.79 | 0.68 | 0.95 | 0.35 | 1 | 0.88 | 0.01 | 0.01 | 0.13 | 0.01 | 0.34 | 0.21 | |
S21 | 1 | 0.90 | 0.84 | 0.88 | 0.96 | 0.89 | 1 | 1 | 0.87 | 1 | 0.98 | 0.96 | 0.96 | 1 | 0.96 | 0.97 | 0.97 | |
S22 | 0.78 | 0.94 | 1 | 0.61 | 0.58 | 1 | 1 | 1 | 1 | 1 | 1 | 0.58 | 0.58 | 0.80 | 0.58 | 0.72 | 0.67 | |
S23 | 0.90 | 0.89 | 0.58 | 1 | 0.67 | 0.76 | 1.00 | 1 | 0.85 | 1 | 0.96 | 0.67 | 0.68 | 0.91 | 0.67 | 0.78 | 0.74 | |
S24 | 0.42 | 0.71 | 0.83 | 0.69 | 0.31 | 0.80 | 0.97 | 0.96 | 0.75 | 1 | 0.89 | 0.31 | 0.32 | 0.49 | 0.31 | 0.54 | 0.45 | |
S25 | 0.00 | 0.39 | 0.49 | 0.07 | 0.00 | 0.89 | 0.59 | 0.89 | 0.26 | 0.93 | 0.91 | 0.00 | 0.00 | 0.05 | 0.00 | 0.30 | 0.16 | |
S26 | 0.81 | 0.96 | 0.70 | 0.80 | 0.61 | 0.87 | 1 | 1 | 1 | 0.98 | 1 | 0.61 | 0.61 | 0.83 | 0.61 | 0.74 | 0.68 | |
S27 | 0.10 | 0.50 | 0.37 | 0.30 | 0.08 | 0.56 | 0.74 | 0.86 | 0.44 | 1 | 0.84 | 0.08 | 0.08 | 0.21 | 0.08 | 0.39 | 0.26 | |
S28 | 0.66 | 0.72 | 0.74 | 0.50 | 0.49 | 0.70 | 0.86 | 0.84 | 0.64 | 0.92 | 0.78 | 0.49 | 0.50 | 0.70 | 0.49 | 0.66 | 0.60 |
Fish Id | Suitability-Based Clusters of Consecutive Water Sites in Terms of (Range of Sites, Their Average Suitability) | Average Suitability | Linguistic Values |
---|---|---|---|
F1 | (S1:S2, 1); (S7, 0.98); (S9:S13, 1); (S15:S19, 0.99); (S21, 1); (S23, 0.9) | 0.99 | Fit |
(S3:S4, 0.82); (S14, 0.76); (S22, 0.78); (S26, 0.81) | 0.80 | Good | |
(S28, 0.66) | 0.66 | Bad | |
(S5:S6, 0.025); (S8, 0.52); (S20, 0.01); (S24:S25, 0.21); (S27; 0.1) | 0.16 | Unfit | |
F2 | (S1:S4, 0.99); (S7, 0.88); (S9, 1); (S11, 1); (S17:S18, 0.89); (S21:S23, 0.91); (S26, 0.96) | 0.94 | Fit |
(S12:S13, 0.87); (S15: S16, 0.85); | 0.86 | Good | |
(S8, 0.77); (S10, 0.79); (S14, 0.76); (S19, 0.80); (S24, 0.71); (S28, 0.72) | 0.79 | Fair | |
(S5:S6, 0.325); (S20, 0.44); (S25, 0.39); (S27, 0.50) | 0.40 | Unfit | |
F3 | (S1:S2, 0.975); (S4, 1); (S9, 1); (S18, 0.90); (S22, 1) | 0.98 | Fit |
(S3, 0.82); (S11, 0.83); (S16:S17, 0.82); (S21, 0.84); (S24, 0.83) | 0.83 | Good | |
(S8, 0.77); (S13, 0.75); (S26, 0.70); (S28, 0.74) | 0.74 | Fair | |
(S6:S7, 0.655); (S10, 0.62); (S12, 0.55); (S15, 0.65); (S20, 0.55); (S23, 0.58); | 0.63 | Bad | |
(S5, 0.01); (S14, 0.22); (S19, 0.40); (S25, 0.49); (S27, 0.37) | 0.30 | Unfit | |
F4 | (S7, 1.0); (S10, 1.0); (S12:S17, 0.965); (S19, 1.0); (S21, 0.88); (S23, 1.0) | 0.99 | Fit |
(S8, 0.81); (S11, 0.83); | 0.82 | Good | |
(S5, 0.73); (S18, 0.68); (S24, 0.80); (S26, 0.69) | 0.73 | Fair | |
(S2, 0.56); (S22, 0.61); | 0.56 | Bad | |
(S1, 0.52); (S3, 0.08); (S4, 0.34); (S6, 0.23); (S9, 0.51); (S20, 0.18); (S25, 0.07); (S27, 0.3); (S28, 0.5) | 0.30 | Unfit | |
F5 | (S1:S3, 0.97); (S9:S13, 0.984); (S15:S18, 0.95); (S21, 0.96) | 0.98 | Fit |
(S19, 0.78) | 0.78 | Fair | |
(S4, 0.62); (S7, 0.74); (S14, 0.61); (S22:S23, 0.625); (S26, 0.61) | 0.64 | Bad | |
(S5:S6, 0.015); (S8, 0.39); (S20, 0.01); (S24, 0.31); (S25, 0); (S27:S28, 0.285) | 0.16 | Unfit | |
F6 | (S1:S4, 0.98); (S8:S9, 0.97); (S11, 1); (S17:S18, 0.89); (S21:S22, 0.95), (S25:S26, 0.88) | 0.96 | Fit |
(S7, 0.87); (S13, 0.84); (S15:S16, 0.825); | 0.88 | Good | |
(S6, 0.76); (S10, 0.77); (S12, 0.73); (S20, 0.79); (S23:S24, 0.78); | 0.79 | Fair | |
(S19, 0.58); (S27:S28, 0.63) | 0.62 | Bad | |
(S5, 0.21); (S14, 0.41) | 0.31 | Unfit | |
F7 | (S1:S4, 0.97); (S7:S13, 0.985); (S15:S18, 0.997); (S21:S24, 0.99); (S26, 1) | 0.99 | Fit |
(S28, 0.86) | 0.86 | Good | |
(S19, 0.77) | 0.77 | Fair | |
(S6, 0.71); (S14, 0.56); (S20, 0.68); (S25, 0.59); (S27, 0.74) | 0.67 | Bad | |
(S5, 0.30) | 0.30 | Unfit | |
F8 | (S1:S4, 0.99); (S6:S13, 0.99); (S15:S26, 0.97) | 0.98 | Fit |
(S27,: S28, 0.85) | 0.85 | Good | |
(S14, 0.69) | 0.69 | Fair | |
(S5, 0.44) | 0.44 | Unfit | |
F9 | (S1:S2, 1); (S4, 1); (S9, 1); (S11, 1); (S14, 0.94); (S22, 1); (S26, 1) | 0.99 | Fit |
(S7:S8, 0.845); (S12, 0.86); (S15:S18, 0.84); (S21, 0.87); (S23, 0.85) | 0.85 | Good | |
(S3, 0.8); (S10, 0.72); (S13, 0.8); (S19, 0.75); (S24, 0.75) | 0.76 | Fair | |
(S28, 0.64) | 0.64 | Bad | |
(S5:S6, 0.19); (S20, 0.35); (S25, 0.26); (S27, 0.44) | 0.29 | Unfit | |
F10 | (S6:S28, 0.99) | 0.99 | Fit |
(S4,0.75) | 0.75 | Fair | |
(S1:S3,0.63); ( S5, 0.63) | 0.63 | Bad | |
F11 | (S1:S2,0.98); (S4,1); (S6:S9,0.98); (S11:S13,0.96); (S15:S18,0.95); (S21:S23,0.98); (S25:S26,0.95); (S24,0.89) | 0.96 | Fit |
(S3,0.82); (S10,0.86); (S14,0.81); (S19:S20,0.87); (S27:S28,0.81) | 0.84 | Good | |
(S5,0.57) | 0.57 | Bad | |
F12 | (S1:S3,0.96); (S9,1); (S11,1); (S13,0.92); (S16:S18,0.91) | 0.95 | Fit |
(S10,0.81); (S15,0.84) | 0.83 | Good | |
(S7,0.74); (S12,0.76); | 0.75 | Fair | |
(S4,0.62); (S19,0.62); (S22:S23,0.63); (S26,0.61) | 0.62 | Bad | |
(S5:S6,0.015); (S8,0.39); (S14,0.47); (S20,0.01); (S24,0.32); (S25,0); (S27:S28,0.29) | 0.20 | Unfit |
Fish ID | (Kom Ombo) | (Edfu) | (Banha) | ||||||
---|---|---|---|---|---|---|---|---|---|
F1 | +7% | +44% | 0% | 0% | +22% | 0% | 0% | +27% | 0% |
F2 | +7% | +39% | 0% | 0% | +17% | 0% | 0% | +23% | 0% |
F3 | +32% | +31% | 0% | +4% | +11% | 0% | 0% | +16% | 0% |
F4 | 0% | +31% | −3% | 0% | +11% | −1% | −2% | +16% | 0% |
F5 | +16% | +57% | 0% | 0% | +33% | 0% | 0% | +39% | 0% |
F6 | +25% | +5% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
F7 | +15% | +18% | 0% | 0% | 0% | 0% | 0% | +4% | 0% |
F8 | +11% | +5% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
F9 | 0% | +31% | 0% | 0% | +11% | 0% | 0% | +16% | 0% |
F10 | 0% | +5% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
F11 | +7% | +5% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
F12 | +25% | +57% | 0% | 0% | +33% | 0% | 0% | +39% | 0% |
F13 | 0% | +57% | 0% | 0% | +33% | 0% | 0% | +39% | 0% |
F14 | 0% | +44% | 0% | 0% | +22% | 0% | 0% | +27% | 0% |
F15 | 0% | +57% | 0% | 0% | +33% | 0% | 0% | +39% | 0% |
F16 | 0% | +57% | 0% | 0% | +33% | 0% | 0% | +39% | 0% |
F17 | 0% | +57% | 0% | 0% | +33% | 0% | 0% | +39% | 0% |
Work | Considered Aspects | Methodology | Contribution Outputs |
---|---|---|---|
[4] |
|
|
|
[15] |
|
|
|
[20] |
|
|
|
This work |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gadallah, A.M.; Elsayed, S.A.; Mousa, S.; Hefny, H.A. A Fuzzy-Based Approach for Flexible Modeling and Management of Freshwater Fish Farming. Mathematics 2024, 12, 2146. https://doi.org/10.3390/math12132146
Gadallah AM, Elsayed SA, Mousa S, Hefny HA. A Fuzzy-Based Approach for Flexible Modeling and Management of Freshwater Fish Farming. Mathematics. 2024; 12(13):2146. https://doi.org/10.3390/math12132146
Chicago/Turabian StyleGadallah, Ahmed M., Sameh A. Elsayed, Shaymaa Mousa, and Hesham A. Hefny. 2024. "A Fuzzy-Based Approach for Flexible Modeling and Management of Freshwater Fish Farming" Mathematics 12, no. 13: 2146. https://doi.org/10.3390/math12132146
APA StyleGadallah, A. M., Elsayed, S. A., Mousa, S., & Hefny, H. A. (2024). A Fuzzy-Based Approach for Flexible Modeling and Management of Freshwater Fish Farming. Mathematics, 12(13), 2146. https://doi.org/10.3390/math12132146