Designing Decentralized Multi-Variable Robust Controllers: A Multi-Objective Approach Considering Nearly Optimal Solutions
Abstract
:1. Introduction
2. Background
2.1. Multi-Objective Optimization Problems
2.2. Considering Uncertainties in MOP
2.3. Advantages of Using Nearly Optimal Solutions in MOP
3. Comparison of Design Concepts in MOP
Obtaining a Lightly Robust Set
4. Methodology Proposed
- Define as the maximum acceptable loss for the design objectives for .
- Define neighborhood as the maximum distance between neighboring controllers for each design concept .
- An MOP is defined for and each design concept (see MOP, as defined on (1)). In the optimization, , the optimal controllers, and the relevant nearly optimal controllers were obtained.
- The Pareto set is defined considering all concepts simultaneously, thus obtaining ().
- Finally, is obtained for each solution of set .
5. Example 1: Control of a Linear System with Uncertainties
5.1. Description of the Problem
- Diagonal PI controllers ():
- Off-diagonal PI controllers ():
5.2. Results and Discussion
- The off-diagonal concept () is optimal in Zones 1 and 2.
- The diagonal concept () is optimal in Zones 3 and 4.
- The off-diagonal concept (blue stars) was not very robust in Zone 1. In this zone, controllers were obtained with being very degraded and going off the graph’s scale.
- In Zone 2, diagonal concept was significantly more robust.
- In Zone 3, the most robust was the off-diagonal concept .
- Finally, in Zone 4, there was no clear preference between the compared concepts regarding their robustness.
- The designer prefers controllers with a small error in exchange for a worse control effort.
- The designer prefers controllers with low control effort in exchange for more error.
- The off-diagonal concept () is optimal in the range .
- The diagonal concept () is optimal in the range .
- The off-diagonal concept is now more robust for small values (unlike before).
- The off-diagonal concept is more robust in the range .
- The diagonal concept is optimal in the range .
- (new methodology, see Section 4) mathematically guarantees (see Theorem 1) its similarity to the set of robust controllers (see Figure 8), with a notably lower computational cost (see Table 3). In addition, this methodology provides more information, and so enables a more reliable solution to be chosen.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2001; Volume 16. [Google Scholar]
- Miettinen, K. Nonlinear Multiobjective Optimization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 12. [Google Scholar]
- Gunantara, N. A review of multi-objective optimization: Methods and its applications. Cogent Eng. 2018, 5, 1502242. [Google Scholar] [CrossRef]
- Weinmann, A. Uncertain Models and Robust Control; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Xu, J.; Du, Y.; Chen, Y.H.; Guo, H. Optimal robust control design for constrained uncertain systems: A fuzzy-set theoretic approach. IEEE Trans. Fuzzy Syst. 2018, 26, 3494–3505. [Google Scholar] [CrossRef]
- Schöbel, A. Generalized light robustness and the trade-off between robustness and nominal quality. Math. Methods Oper. Res. 2014, 80, 161–191. [Google Scholar] [CrossRef]
- Laughlin, D.L.; Jordan, K.G.; Morari, M. Internal model control and process uncertainty: Mapping uncertainty regions for SISO controller design. Int. J. Control 1986, 44, 1675–1698. [Google Scholar] [CrossRef]
- Parnianifard, A.; Azfanizam, A.S. Metamodel-based robust simulation-optimization assisted optimal design of multiloop integer and fractional-order PID controller. Int. J. Numer. Model. Electron. Netw. Devices Fields 2020, 33, e2679. [Google Scholar] [CrossRef]
- Crespo, L.G.; Kenny, S.P. Robust Control Design for Systems with Probabilistic Uncertainty; Technical Report; NASA: Washington, DC, USA, 2005. [Google Scholar]
- Fischetti, M.; Monaci, M. Light robustness. In Robust and Online Large-Scale Optimization; Springer: Berlin/Heidelberg, Germany, 2009; pp. 61–84. [Google Scholar]
- Hernández Castellanos, C.I.; Schütze, O.; Sun, J.Q.; Ober-Blöbaum, S. Non-Epsilon Dominated Evolutionary Algorithm for the Set of Approximate Solutions. Math. Comput. Appl. 2020, 25, 3. [Google Scholar] [CrossRef]
- Ide, J.; Schöbel, A. Robustness for uncertain multi-objective optimization: A survey and analysis of different concepts. OR Spectr. 2016, 38, 235–271. [Google Scholar] [CrossRef]
- Soyster, A.L. Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 1973, 21, 1154–1157. [Google Scholar] [CrossRef]
- Ben-Tal, A.; El Ghaoui, L.; Nemirovski, A. Robust Optimization; Princeton University Press: Princeton, NJ, USA, 2009; Volume 28. [Google Scholar]
- Kuroiwa, D.; Lee, G.M. On robust multiobjective optimization. Vietnam J. Math 2012, 40, 305–317. [Google Scholar]
- Parnianifard, A.; Fakhfakh, M.; Kotti, M.; Zemouche, A.; Wuttisittikulkij, L. Robust tuning and sensitivity analysis of stochastic integer and fractional-order PID control systems: Application of surrogate-based robust simulation-optimization. Int. J. Numer. Model. Electron. Netw. Devices Fields 2021, 34, e2835. [Google Scholar] [CrossRef]
- Bertsimas, D.; Sim, M. The price of robustness. Oper. Res. 2004, 52, 35–53. [Google Scholar] [CrossRef]
- Ben-Tal, A.; Nemirovski, A. Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. 2000, 88, 411–424. [Google Scholar] [CrossRef]
- Ben-Tal, A.; Goryashko, A.; Guslitzer, E.; Nemirovski, A. Adjustable robust solutions of uncertain linear programs. Math. Program. 2004, 99, 351–376. [Google Scholar] [CrossRef]
- Erera, A.L.; Morales, J.C.; Savelsbergh, M. Robust optimization for empty repositioning problems. Oper. Res. 2009, 57, 468–483. [Google Scholar] [CrossRef]
- Liebchen, C.; Lübbecke, M.; Möhring, R.; Stiller, S. The concept of recoverable robustness, linear programming recovery, and railway applications. In Robust and Online Large-Scale Optimization: Models and Techniques for Transportation Systems; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–27. [Google Scholar]
- Stiller, S. Extending Concepts of Reliability-Network Creation Games, Real-Time Scheduling, and Robust Optimization. Ph.D. Thesis, Technical University Berlin, Berlin, Germany, 2009. [Google Scholar]
- Goerigk, M.; Schmidt, M.; Schöbel, A.; Knoth, M.; Müller-Hannemann, M. The price of strict and light robustness in timetable information. Transp. Sci. 2014, 48, 225–242. [Google Scholar] [CrossRef]
- Goerigk, M.; Schöbel, A. An empirical analysis of robustness concepts for timetabling. In Proceedings of the 10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’10), Liverpool, UK, 6–10 September 2010. [Google Scholar]
- He, Y.; Li, Z.; Zhang, J.; Shi, G.; Cao, W. Day-ahead and intraday multi-time scale microgrid scheduling based on light robustness and MPC. Int. J. Electr. Power Energy Syst. 2023, 144, 108546. [Google Scholar] [CrossRef]
- Schöbel, A.; Zhou-Kangas, Y. The price of multiobjective robustness: Analyzing solution sets to uncertain multiobjective problems. Eur. J. Oper. Res. 2021, 291, 782–793. [Google Scholar] [CrossRef]
- Klamroth, K.; Köbis, E.; Schöbel, A.; Tammer, C. A unified approach for different concepts of robustness and stochastic programming via non-linear scalarizing functionals. Optimization 2013, 62, 649–671. [Google Scholar] [CrossRef]
- Pajares, A.; Blasco, X.; Herrero, J.M.; Veyna, U. Advantages of using relevant nearly optimal solutions in multi-objective tuning of robust controllers. ISA Trans. 2023, 139, 143–155. [Google Scholar] [CrossRef]
- Pajares, A.; Blasco, X.; Herrero, J.M.; Reynoso-Meza, G. A multiobjective genetic algorithm for the localization of optimal and nearly optimal solutions which are potentially useful: NevMOGA. Complexity 2018, 2018, 1792420. [Google Scholar] [CrossRef]
- Herrero, J.; Reynoso-Meza, G.; Ramos, C.; Blasco, X. Considerations on loop pairing in MIMO processes. A multi-criteria analysis. IFAC-PapersOnLine 2017, 50, 4454–4459. [Google Scholar] [CrossRef]
- Pareto, V.; Schwier, A.S.; Page, A.N. Manual of Political Economy; Macmillan: New York, NY, USA, 1971. [Google Scholar]
- Schütze, O.; Coello, C.A.C.; Talbi, E.G. Approximating the ε-efficient set of an MOP with stochastic search algorithms. In Proceedings of the Mexican International Conference on Artificial Intelligence, Aguascalientes, Mexico, 4–10 November 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 128–138. [Google Scholar]
- Schütze, O.; Vasile, M.; Coello, C.A.C. Computing the set of epsilon-efficient solutions in multiobjective space mission design. J. Aerosp. Comput. Inf. Commun. 2011, 8, 53–70. [Google Scholar] [CrossRef]
- Ehrgott, M.; Ide, J.; Schöbel, A. Minmax robustness for multi-objective optimization problems. Eur. J. Oper. Res. 2014, 239, 17–31. [Google Scholar] [CrossRef]
- Martínez-Iranzo, M.; Herrero, J.M.; Sanchis, J.; Blasco, X.; García-Nieto, S. Applied Pareto multi-objective optimization by stochastic solvers. Eng. Appl. Artif. Intell. 2009, 22, 455–465. [Google Scholar] [CrossRef]
- Mc Avoy, T.; Arkun, Y.; Chen, R.; Robinson, D.; Schnelle, P.D. A new approach to defining a dynamic relative gain. Control Eng. Pract. 2003, 11, 907–914. [Google Scholar] [CrossRef]
- Cai, L.J.; Erlich, I.; Fortmann, J. Dynamic voltage stability analysis for power systems with wind power plants using relative gain array (RGA). IFAC Proc. Vol. 2012, 45, 331–336. [Google Scholar] [CrossRef]
- Blasco, X.; Herrero, J.M.; Reynoso-Meza, G.; Iranzo, M.A.M. Interactive tool for analyzing multiobjective optimization results with level diagrams. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Berlin, Germany, 15–19 July 2017; pp. 1689–1696. [Google Scholar]
Controller | f | ||||
---|---|---|---|---|---|
0.21 | 197.4 | 0.51 | 226.5 | [133.3 94.7] | |
0.41 | 197.4 | 0.51 | 226.5 | [142.7 113.8] | |
0.21 | 447.4 | 0.51 | 226.5 | [169.1 82.8] | |
0.21 | 197.4 | 0.71 | 226.5 | [128.5 107.3] | |
0.21 | 197.4 | 0.51 | 876.5 | [171.8 82.7] | |
Controller | |||||
−0.45 | 9.6 | 0.5 | 842.8 | [126.0 94.7] | |
−0.25 | 9.6 | 0.5 | 842.8 | [129.5 94.7] | |
−0.45 | 259.6 | 0.5 | 842.8 | [147.8 91.5] | |
−0.45 | 9.6 | 0.7 | 842.8 | [92.4 113.8] | |
−0.45 | 9.6 | 0.5 | 192.8 | [139.4 171.9] |
Zone | Set | f | ||||||
---|---|---|---|---|---|---|---|---|
1 | 0.19 | 304.9 | 0.48 | 238.5 | [162.2 83.0] | [189.3 123.5] | ||
1 | 0.18 | 309.5 | 0.47 | 266.6 | [168.8 80.3] | [198.9 119.1] | ||
1 | 0.18 | 348.5 | 0.46 | 290.8 | [177.2 77.8] | [209.6 114.5] | ||
1 | 0.18 | 230.0 | 0.43 | 333.7 | [163.1 81.1] | [199.5 121.5] | ||
1 | 0.29 | 519.6 | 0.64 | 572.7 | [170.2 84.2] | [196.2 129.3] | ||
1 | 0.28 | 576.0 | 0.57 | 494.7 | [161.2 90.1] | [208.4 121.4] | ||
Zone | Set | |||||||
2 | −0.42 | 11.8 | 0.44 | 959.1 | [149.3 87.2] | [193.1 107.8] | ||
2 | −0.42 | 12.3 | 0.42 | 966.4 | [159.0 84.6] | [206.0 104.3] | ||
2 | −0.42 | 13.85 | 0.40 | 977.0 | [169.1 82.2] | [219.1 101.0] | ||
2 | −0.29 | 15.2 | 0.40 | 734.1 | [154.2 87.4] | [200.2 108.9] | ||
2 | −0.55 | 525.0 | 0.44 | 883.7 | [168.5 85.7] | [213.6 109.1] | ||
2 | −0.62 | 255.5 | 0.41 | 755.8 | [159.9 86.4] | [205.8 109.8] |
Set | Computational Cost | |||
---|---|---|---|---|
Before Optim. | Optim. Stage | Decision Stage | Total Cost | |
428 min | 17,333 min | - | 17,761 min | |
- | 454 min | 167 min | 621 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pajares, A.; Blasco, X.; Herrero, J.M.; Sanchis, J.; Simarro, R. Designing Decentralized Multi-Variable Robust Controllers: A Multi-Objective Approach Considering Nearly Optimal Solutions. Mathematics 2024, 12, 2124. https://doi.org/10.3390/math12132124
Pajares A, Blasco X, Herrero JM, Sanchis J, Simarro R. Designing Decentralized Multi-Variable Robust Controllers: A Multi-Objective Approach Considering Nearly Optimal Solutions. Mathematics. 2024; 12(13):2124. https://doi.org/10.3390/math12132124
Chicago/Turabian StylePajares, Alberto, Xavier Blasco, Juan Manuel Herrero, Javier Sanchis, and Raúl Simarro. 2024. "Designing Decentralized Multi-Variable Robust Controllers: A Multi-Objective Approach Considering Nearly Optimal Solutions" Mathematics 12, no. 13: 2124. https://doi.org/10.3390/math12132124
APA StylePajares, A., Blasco, X., Herrero, J. M., Sanchis, J., & Simarro, R. (2024). Designing Decentralized Multi-Variable Robust Controllers: A Multi-Objective Approach Considering Nearly Optimal Solutions. Mathematics, 12(13), 2124. https://doi.org/10.3390/math12132124