Fractional Differential Operator Based on Quantum Calculus and Bi-Close-to-Convex Functions
Abstract
:1. Preliminaries and Basic Notations
- i.
- ii.
2. Set of Lemmas
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J. Aspects of contemporary complex analysis. In Proceedings of the NATO Advanced Study Institute Held at University of Durham, Durham, UK, 1–20 July 1979; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in z<1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent function. Stud. Univ. Babeş-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Hayami, T.; Owa, S. Coefficient bounds for bi-univalent functions. Pan Am. Math. J. 2012, 22, 15–26. [Google Scholar]
- Xu, Q.H.; Xiao, H.G.; Srivastava, H.M. A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Appl. Math. Comput. 2012, 218, 11461–11465. [Google Scholar] [CrossRef]
- Faber, G. Uber polynomische Entwickelungen. Math. Ann. 1903, 57, 1569–1573. [Google Scholar] [CrossRef]
- Gong, S. The Bieberbach Conjecture, Translated from the 1989 Chinese Original and Revised by the Author; AMS/IP Studies in Advanced Mathematics; American Mathematical Society: Providence, RI, USA, 1999; Volume 12, MR1699322. [Google Scholar]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomials coefficient estimates for analytic bi-close-to-convex functions. Comptes Rendus Math. 2014, 352, 17–20. [Google Scholar] [CrossRef]
- Bulut, S. A new comprehensive subclass of analytic bi-close-to-convex functions. Turk. J. Math. 2019, 43, 1414–1424. [Google Scholar] [CrossRef]
- Bulut, S. Coefficient estimates for functions associated with vertical strip domain. Commun. Korean Math. Soc. 2022, 37, 537–549. [Google Scholar]
- Güney, H.O.; Murugusundaramoorthy, G.; Srivastava, H.M. The second Hankel determinant for a certain class of bi-close-to-convex functions. Results Math. 2019, 74, 93. [Google Scholar] [CrossRef]
- Bulut, S. Faber polynomial coefficients estimates for a comprehensive subclass of analytic bi-univalent functions. Comptes Rendus Math. 2014, 352, 479–484. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations. Bull. Iran. Math. Soc. 2015, 41, 1103–1119. [Google Scholar]
- Khan, S.; Altınkaya, S.; Xin, Q.; Tchier, F.; Malik, S.N.; Khan, N. Faber polynomial coefficient estimates for Janowski type bi-close-to-convex and bi-quasi-convex functions. Symmetry 2023, 15, 604. [Google Scholar] [CrossRef]
- Khan, N.; Ahmad, Q.Z.; Khan, S.; Khan, B. The Faber polynomial expansion method for a subclass of analytic and bi-univalent functions associated with the Janowski functions. Montes Taurus J. Pure Appl. Math. 2021, 3, 17–24. [Google Scholar]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficients of bi-subordinate functions. Comptes Rendus Math. 2016, 354, 365–370. [Google Scholar] [CrossRef]
- Srivastava, M.; Khan, S.; Ahmad, Q.Z.; Khan, N.; Hussain, S. The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator. Stud. Univ. Babeş-Bolyai Math. 2018, 63, 419–436. [Google Scholar] [CrossRef]
- Airault, H.; Bouali, H. Differential calculus on the Faber polynomials. Bull. Sci. Math. 2006, 130, 179–222. [Google Scholar] [CrossRef]
- Airault, H. Symmetric sums associated to the factorizations of Grunsky coefficients. In Conference, Groups and Symmetries; American Mathematical Society: Montreal, QC, Canada, 2007. [Google Scholar]
- Darus, M.; Ibrahim, R.W. Radious estimates of a subclass of univalent functions. Math. Vesn. 2011, 63, 55–58. [Google Scholar]
- Bao, G.; Ling, Y.; Srivastava, M.H. Some disstortion inequalities associated with fractional derivatives of analytic and univalent functions. J. Inequalities Pure Appl. Math. 2001, 2, 23. [Google Scholar]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions; Fractional Calculus; and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1989; pp. 329–354. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Annaby, M.H.; Mansour, Z.S. q-Fractional Calculus and Equations; Springer: New York, NY, USA, 2012. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: Hoboken, NJ, USA, 1993. [Google Scholar]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series; Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Purohit, S.D.; Raina, R.K. Certain subclasses of analytic functions associated with fractional q-calculus operators. Math. Scand. 2011, 109, 55–70. [Google Scholar] [CrossRef]
- Abelman, S.; Selvakumaran, K.A.; Rashidi, M.M.; Purohit, S.D. Subordination conditions for a class of non-Bazilevič type defined by using fractional q-calculus operators. Facta Univ. Ser. Math. Inf. 2017, 32, 255–267. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Choi, J. Zeta and q-zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Selvakumaran, K.A.; Choi, J.; Purohit, S.D. Certain subclasses of analytic functions defined by fractional q-calculus operators. Appl. Math. E-Notes 2021, 21, 72–80. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. Some subordination results on q-analogue of Ruscheweyh differential operator. Abst. Appl. Anal. 2014, 2024, 958563. [Google Scholar] [CrossRef]
- Mahmood, S.; Sokół, J. New subclass of analytic functions in conical domain associated with ruscheweyh q-differential operator. Results Math. 2017, 71, 1345–1357. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Khan, N.; Shafiq, M.; Darus, M.; Khan, B.; Ahmad, Q.Z. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with lemniscate of Bernoulli. J. Math. Inequalities 2020, 14, 51–63. [Google Scholar] [CrossRef]
- Bulut, S. Faber polynomial coefficient estimates for a comprehensive subclass of m-fold symmetric analytic bi-univalent functions. J. Frac. Calc. Appl. 2017, 8, 108–117. [Google Scholar]
- Pommerenke, C. Univalent Functions; Vandenhoeck and Rupercht: Göttingen, Germany, 1975. [Google Scholar]
- Duren, P.L. Univalent Functions; Grundlehren der mathematischen Wissenschaften; Springer: New York, NY, USA, 1983; Volume 259. [Google Scholar]
- Bulut, S. Coefficient estimates for Libera type bi-close-to-convex functions. Math. Slovaca 2021, 71, 1401–1410. [Google Scholar] [CrossRef]
- Wang, Z.G.; Bulut, S. A note on the coefficient estimates of bi-close-to-convex functions. Comptes Rendus Math. 2017, 355, 876–880. [Google Scholar] [CrossRef]
- Sümer Eker, S.; Şeker, B.; Çekiç, B.; Acu, M. Sharp Bounds for the Second Hankel Determinant of Logarithmic Coefficients for Strongly Starlike and Strongly Convex Functions. Axioms 2022, 11, 369. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Z.; Alb Lupaş, A.; Bin Jebreen, H.; Oros, G.I.; Bulboacă, T.; Ahmad, Q.Z. Fractional Differential Operator Based on Quantum Calculus and Bi-Close-to-Convex Functions. Mathematics 2024, 12, 2026. https://doi.org/10.3390/math12132026
Jia Z, Alb Lupaş A, Bin Jebreen H, Oros GI, Bulboacă T, Ahmad QZ. Fractional Differential Operator Based on Quantum Calculus and Bi-Close-to-Convex Functions. Mathematics. 2024; 12(13):2026. https://doi.org/10.3390/math12132026
Chicago/Turabian StyleJia, Zeya, Alina Alb Lupaş, Haifa Bin Jebreen, Georgia Irina Oros, Teodor Bulboacă, and Qazi Zahoor Ahmad. 2024. "Fractional Differential Operator Based on Quantum Calculus and Bi-Close-to-Convex Functions" Mathematics 12, no. 13: 2026. https://doi.org/10.3390/math12132026
APA StyleJia, Z., Alb Lupaş, A., Bin Jebreen, H., Oros, G. I., Bulboacă, T., & Ahmad, Q. Z. (2024). Fractional Differential Operator Based on Quantum Calculus and Bi-Close-to-Convex Functions. Mathematics, 12(13), 2026. https://doi.org/10.3390/math12132026