Global Existence of Small Data Solutions to Weakly Coupled Systems of Semi-Linear Fractional σ–Evolution Equations with Mass and Different Nonlinear Memory terms
Abstract
1. Introduction
2. Main Results
3. Preliminaries
4. Analysis of Weakly Coupled Linear Systems
5. Proof of Main Results
5.1. Proof of Theorem 1
5.2. Proof of Theorem 2
5.3. Proof of Theorem 3
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fujita, H.T. On the blowing-up of solutions of the Cauchy problem for ∂tu = Δu + u1+λ. J. Fac. Sci. Univ. Tokyo Sect. 1966, 13, 109–124. [Google Scholar]
- Hayakawa, K. On the growing up problem for semi-linear heat equations. Proc. Jpn. Acad. 1973, 49, 503–505. [Google Scholar]
- Kobayashi, K.; Sirao, T.; Tanaka, H. The Critical Exponent(s) for the Semilinear Fractional Diffusive Equation. J. Math. Soc. Jpn. 1977, 29, 407–424. [Google Scholar]
- Strauss, W.A. Nonlinear scattering theory at low energy. J. Funct. Anal. 1981, 41, 110–133. [Google Scholar] [CrossRef]
- Glassey, R.T. Existence in the large for □u = F(u) in two space dimensions. Math. Z. 1981, 178, 233–261. [Google Scholar] [CrossRef]
- Glassey, R.T. Finite-time blow-up for solutions of nonlinear wave equations. Math. Z. 1981, 177, 323–340. [Google Scholar] [CrossRef]
- Schaeffer, J. The equation ∂ttu + −Δu = |u|p for the critical value of p. Proc. R. Soc. Edinb. Sect. A 1985, 101, 31–44. [Google Scholar] [CrossRef]
- Yordanov, B.T.; Zhang, Q.S. Finite time blow up for critical wave equations in high dimensions. J. Funct. Anal. 2006, 231, 361–374. [Google Scholar] [CrossRef]
- Zhou, Y. Blow up of solutions to semilinear wave equations with critical exponent in high dimensions. Chin. Ann. Math. Ser. B 2007, 28, 205–212. [Google Scholar] [CrossRef]
- Kato, T. Blow-up of solutions of some nonlinear hyperbolic equations. Commun. Pure Appl. Math. 1980, 33, 501–505. [Google Scholar] [CrossRef]
- John, F. Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscr. Math. 1979, 28, 235–268. [Google Scholar] [CrossRef]
- Sideris, T.C. Nonexistence of global solutions to semilinear wave equations in high dimensions. J. Differ. Equ. 1984, 52, 378–406. [Google Scholar] [CrossRef]
- D’Abbicco, M.; Ebert, M.R.; Picon, T.H. The Critical Exponent(s) for the Semilinear Fractional Diffusive Equation. J. Fourier Anal. Appl. 2019, 25, 696–731. [Google Scholar] [CrossRef]
- Kainane Mezadek, A.; Reissig, M. Semi-linear fractional σ–evolution equations with mass or power non-linearity. Nonlinear Differ. Equ. Appl. 2018, 25, 1–43. [Google Scholar] [CrossRef]
- Kainane Mezadek, A. Global existence of small data solutions to Semi-Linear Fractional σ–Evolution Equations with mass and Nonlinear Memory. Mediterr. J. Math. 2020, 17, 159. [Google Scholar] [CrossRef]
- Escobedo, M.; Herrero, A. Boundedness and blow up for a semilinear reaction-diffusion system. J. Differ. Equ. 1991, 89, 176–202. [Google Scholar] [CrossRef]
- Andreucci, D.; Herrero, M.A.; Velázquez, J.L. Liouville theorems and blow up behaviour in semilinear reaction diffusion systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 1997, 14, 1–53. [Google Scholar] [CrossRef]
- Escobedo, M.; Levine, H.A. Critical blow up and global existence numbers for a weakly coupled system of reaction-diffusion equations. Arch. Rational Mech. Anal. 1995, 129, 47–100. [Google Scholar] [CrossRef]
- Rencławowicz, J. Blow up, global existence and growth rate estimates in nonlinear parabolic systems. Colloq. Math. 2000, 86, 43–66. [Google Scholar] [CrossRef]
- Snoussi, S.; Tayachi, S. Global existence, asymptotic behavior and self-similar solutions for a class of semilinear parabolic systems. Nonlinear Anal. 2002, 48, 13–35. [Google Scholar] [CrossRef]
- Sun, F.; Wang, M. Existence and nonexistence of global solutions for a non-linear hyperbolic system with damping. Nonlinear Anal. 2007, 66, 2889–2910. [Google Scholar] [CrossRef]
- Narazaki, T. Global solutions to the Cauchy problem for the weakly coupled of damped wave equations. Conf. Publ. 2009, 592–601. [Google Scholar] [CrossRef]
- Nishihara, K.; Wakasugi, Y. Critical exponant for the Cauchy problem to the weakly coupled wave system. Nonlinear Anal. 2014, 108, 249–259. [Google Scholar] [CrossRef]
- Mohammed Djaouti, A.; Reissig, M. Weakly Coupled Systems of Semilinear Effectively Damped Waves with Different Time-Dependent Coefficients in the Dissipation Terms and Different Power Nonlinearities. In New Tools for Nonlinear PDEs and Application. Trends in Mathematics; D’Abbicco, E.M., Georgiev, M., Ozawa, T., Eds.; Birkhäuser: Basel, Switzerland, 2019; pp. 209–409. [Google Scholar]
- Mohammed Djaouti, A. Semilinear Systems of Weakly Coupled Damped Waves. Ph.D. Thesis, TU Bergakademie Freiberg, Freiberg, Germany, 2018. [Google Scholar]
- Mohammed Djaouti, A. Modified different nonlinearities for weakly coupled systems of semilinear effectively damped waves with different time-dependent coefficients in the dissipation terms. Adv. Differ. Equ. 2021, 2021, 66. [Google Scholar] [CrossRef]
- Dao, T.A. Global existence of solutions for weakly coupled systems of semi-linear structurally damped σ–evolution models. Appl. Anal. 2022, 101, 1396–1429. [Google Scholar]
- Qiao, Y.; Dao, T.A. On the Cauchy problem for a weakly coupled system of semi-linear σ–evolution equations with double dissipation. arXiv 2023, arXiv:2311.06663. [Google Scholar]
- Mohammed Djaouti, A. Weakly Coupled System of Semi-Linear Fractional θ–Evolution Equations with Special Cauchy Conditions. Symmetry 2023, 15, 1341. [Google Scholar] [CrossRef]
- Kainane Mezadek, A. Weakly Coupled Systems of Semi-Linear Fractional σ–Evolution Equations with Mass and Different Power Nonlinearities. Mediterr. J. Math. 2024, 21, 1–15. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Cui, S. Local and global existence of solutions to semilinear parabolic initial value problems. Nonlinear Anal. 2001, 43, 293–323. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saiah, S.A.; Kainane Mezadek, A.; Kainane Mezadek, M.; Mohammed Djaouti, A.; Al-Quran, A.; Bany Awad, A.M.A. Global Existence of Small Data Solutions to Weakly Coupled Systems of Semi-Linear Fractional σ–Evolution Equations with Mass and Different Nonlinear Memory terms. Mathematics 2024, 12, 1942. https://doi.org/10.3390/math12131942
Saiah SA, Kainane Mezadek A, Kainane Mezadek M, Mohammed Djaouti A, Al-Quran A, Bany Awad AMA. Global Existence of Small Data Solutions to Weakly Coupled Systems of Semi-Linear Fractional σ–Evolution Equations with Mass and Different Nonlinear Memory terms. Mathematics. 2024; 12(13):1942. https://doi.org/10.3390/math12131942
Chicago/Turabian StyleSaiah, Seyyid Ali, Abdelatif Kainane Mezadek, Mohamed Kainane Mezadek, Abdelhamid Mohammed Djaouti, Ashraf Al-Quran, and Ali M. A. Bany Awad. 2024. "Global Existence of Small Data Solutions to Weakly Coupled Systems of Semi-Linear Fractional σ–Evolution Equations with Mass and Different Nonlinear Memory terms" Mathematics 12, no. 13: 1942. https://doi.org/10.3390/math12131942
APA StyleSaiah, S. A., Kainane Mezadek, A., Kainane Mezadek, M., Mohammed Djaouti, A., Al-Quran, A., & Bany Awad, A. M. A. (2024). Global Existence of Small Data Solutions to Weakly Coupled Systems of Semi-Linear Fractional σ–Evolution Equations with Mass and Different Nonlinear Memory terms. Mathematics, 12(13), 1942. https://doi.org/10.3390/math12131942