Stability and Bifurcation Analysis in a Discrete Predator–Prey System of Leslie Type with Radio-Dependent Simplified Holling Type IV Functional Response
Abstract
:1. Introduction and Preliminaries
- On the interval , and are continuous;
- and exist everywhere when , possibly except at the points ;
- The system (5) is true on any interval with .
2. Existence and Stability of Fixed Points
- (i)
- If then
- (i.1)
- and if and only if and ;
- (i.2)
- and if and only if and ;
- (i.3)
- and if and only if ;
- (i.4)
- and if and only if and ;
- (i.5)
- and are a pair of conjugate complex roots and if and only if and ;
- (i.6)
- if and only if and .
- (ii)
- If namely, 1 is one root of , then another root λ satisfies if and only if
- (iii)
- If then has one root lying in . Moreover
- (iii.1)
- the other root λ satisfies if and only if ;
- (iii.2)
- the other root if and only if .
- Case 1. When , :
- Case 2. When , :
- Case 1. If , then .
- Case 2. If , then .
3. Bifurcation Analysis
3.1. Main Results
3.2. Proof of Main Results
4. Numerical Simulation
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holland, J.N.; DeAngelis, D.L. Consumer-resource theory predicts dynamic transitions between outcomes of interspecific interactions. Ecol. Lett. 2009, 12, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Armbruster, D.; Kuang, Y. Dynamics of a plant-herbivore model. J. Biol. Dyn. 2008, 2, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Westwood, J.H. The physiology of the established parasite-host association. In Parasitic Orobanchaceae: Parasitic Mechanisms and Control Strategies; Springer: Berlin/Heidelberg, Germany, 2013; pp. 87–114. [Google Scholar]
- Leslie, P.H. Some further notes on the use of matrices in population mathematics. Biometrika 1948, 35, 213–245. [Google Scholar] [CrossRef]
- Kuto, K.; Yamada, Y. Multiple coexistence states for a prey-predator system with cross-diffusion. J. Differ. Equ. 2004, 197, 315–348. [Google Scholar] [CrossRef]
- Jiang, G.; Lu, Q.; Qian, L. Complex dynamics of a Holling type II prey-predator system with state feedback control. Chaos Solitons Fractals 2007, 31, 448–461. [Google Scholar] [CrossRef]
- Peng, R.; Wang, M. Global stability of the equilibrium of a diffusive Holling–Tanner prey-predator model. Appl. Math. Lett. 2007, 20, 664–670. [Google Scholar] [CrossRef]
- Khaliq, A.; Ibrahim, T.F.; Alotaibi, A.M.; Shoaib, M.; El-Moneam, M.A. Dynamical analysis of Discrete-Time Two-Predators One-Prey Lotka–Volterra model. Mathematics 2022, 10, 4015. [Google Scholar] [CrossRef]
- Chen, J.; He, X.; Chen, F. The Influence of fear effect on a Discrete-Time Predator-Prey system with predator has other food resource. Mathematics 2021, 9, 865. [Google Scholar] [CrossRef]
- Hauzy, C.; Hulot, F.D.; Gins, A.; Loreau, M. Intra- and interspecific density-dependent dispersal in an aquatic prey-predator system. J. Anim. Ecol. 2007, 76, 552–558. [Google Scholar] [CrossRef]
- Li, B.; Kuang, Y. Heteroclinic bifurcation in the Michaelis-Menten-type ratio-dependent predator-prey system. SIAM J. Appl. Math. 2007, 67, 1453–1464. [Google Scholar] [CrossRef]
- Sen, M.; Banerjee, M.; Morozov, A. Bifurcation analysis of a ratio-dependent prey-predator model with the Allee effect. Ecol. Complex. 2012, 11, 12–27. [Google Scholar] [CrossRef]
- Mbava, W.; Mugisha, J.Y.T.; Gonsalves, J.W. Prey, predator and super-predator model with disease in the super-predator. Appl. Math. Comput. 2017, 297, 92–114. [Google Scholar] [CrossRef]
- Yang, R.; Wei, J. Stability and bifurcation analysis of a diffusive prey-predator system in Holling type III with a prey refuge. Nonlinear Dyn. 2015, 79, 631–646. [Google Scholar] [CrossRef]
- Chen, X.; Du, Z. Existence of Positive Periodic Solutions for a Neutral Delay Predator-Prey Model with Hassell–Varley Type Functional Response and Impulse. Qual. Theory Dyn. Syst. 2017, 17, 67–80. [Google Scholar] [CrossRef]
- Arditi, R.; Ginzburg, L.R. Coupling in predator-prey dynamics: Ratio-dependence. J. Theor. Biol. 1989, 139, 311–326. [Google Scholar] [CrossRef]
- Gao, Y.; Yao, S. Dynamical analysis of a modified Leslie-Gower Holling-type II predator-prey stochastic model in polluted environments with interspecific competition and impulsive toxicant input. J. Biol. Dyn. 2022, 16, 840–858. [Google Scholar] [CrossRef] [PubMed]
- Amirabad, H.Q.; Rabieimotlagh, O.; Mohammadinejad, H.M. Permanency in predator-prey models of Leslie type with ratio-dependent simplified Holling type-IV functional response. Math. Comput. Simul. 2019, 157, 63–76. [Google Scholar] [CrossRef]
- Negi, K.; Gakkhar, S. Dynamics in a Beddington–DeAngelis prey-predator system with impulsive harvesting. Ecol. Model. 2007, 206, 421–430. [Google Scholar] [CrossRef]
- Tripathi, J.P.; Abbas, S.; Thakur, M. Dynamical analysis of a prey-predator model with Beddington–DeAngelis type function response incorporating a prey refuge. Nonlinear Dyn. 2015, 80, 177–196. [Google Scholar] [CrossRef]
- Xu, C.; Li, P. Oscillations for a delayed predator-prey model with Hassell–Varley-type functional response. C. R. Biol. 2015, 338, 227–240. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X. Dynamics of a discrete predator-prey model with Holling-II functional response. Int. J. Biomath. 2021, 18, 2150068. [Google Scholar] [CrossRef]
- Yao, W.; Li, X. Bifurcation difference induced by different discrete methods in a discrete predator-prey model. J. Nonlinear Model. Anal. 2022, 4, 64–79. [Google Scholar]
- Dong, J.; Li, X. Bifurcation of a discrete predator-prey model with increasing functional response and constant-yield prey harvesting. Electron. Res. Arch. 2022, 30, 3930–3948. [Google Scholar] [CrossRef]
- Li, X.; Shao, X. Flip bifurcation and Neimark-Sacker bifurcation in a discrete predator-prey model with Michaelis-Menten functional response. Electron. Res. Arch. 2022, 31, 37–57. [Google Scholar] [CrossRef]
- Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos; Springer: NewYork, NY, USA, 2003. [Google Scholar]
- Carr, J. Application of Center Manifold Theory; Springer: NewYork, NY, USA, 1981. [Google Scholar]
- Guckenheimer, J.; Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields; Springer: New York, NY, USA, 1983. [Google Scholar]
Conditions | Eigenvalues | Properties | |
---|---|---|---|
, | sink (stable node) | ||
non-hyperbolic | |||
, | saddle | ||
, | source (unstable node) | ||
non-hyperbolic | |||
, | sink (stable node) | ||
non-hyperbolic | |||
, | saddle |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, L.; Li, X. Stability and Bifurcation Analysis in a Discrete Predator–Prey System of Leslie Type with Radio-Dependent Simplified Holling Type IV Functional Response. Mathematics 2024, 12, 1803. https://doi.org/10.3390/math12121803
Lv L, Li X. Stability and Bifurcation Analysis in a Discrete Predator–Prey System of Leslie Type with Radio-Dependent Simplified Holling Type IV Functional Response. Mathematics. 2024; 12(12):1803. https://doi.org/10.3390/math12121803
Chicago/Turabian StyleLv, Luyao, and Xianyi Li. 2024. "Stability and Bifurcation Analysis in a Discrete Predator–Prey System of Leslie Type with Radio-Dependent Simplified Holling Type IV Functional Response" Mathematics 12, no. 12: 1803. https://doi.org/10.3390/math12121803
APA StyleLv, L., & Li, X. (2024). Stability and Bifurcation Analysis in a Discrete Predator–Prey System of Leslie Type with Radio-Dependent Simplified Holling Type IV Functional Response. Mathematics, 12(12), 1803. https://doi.org/10.3390/math12121803