Extended Efficient Multistep Solvers for Solving Equations in Banach Spaces
Abstract
1. Introduction
2. Analysis: Local
- (i)
- The equationConsider the function ℵ: be continuous and nondecreasing (CN). Define functions on the interval, so by
- (ii)
- Equation has an mps in , denoted by .
- (iii)
- The equationSet and .Consider the function to be CN. Define functions and on the interval by
- (iv)
- Equation has an mps in , denoted by . Define functions , on the interval by
- (v)
- Equations have an mps, denoted by in .Define a radius of convergence r byThese definitions imply that
- is differentiable; exists, and , such that
- For each
- Set
- For each
- Set .
- For each
- and
- There exists , such that
- Set .
3. Semi-Local Convergence
- () There exists and a parameter , such that linear operator is invertible and .
- () for each
- Set The choice of , and the conditions for , imply
- Thus, , and consequently, we can pick .
- () for each
- () Condition (2) holds
- and
- ()
4. Numerical Applications
- (i)
- and
- (ii)
- ,
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kantorovich, L.V.; Akilov, G.P. Functional Analysis; Pergamom Press: Oxford, UK, 1982. [Google Scholar]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Argyros, I.K. Theory and Applications of Iterative Methods; 2nd Edition Engineering Series; CRC Press-Taylor and Francis Group: Boch Raton, FL, USA, 2022. [Google Scholar]
- Argyros, I.K. Convergence and Application of Newton-Type Iterations; Springer: New York, NY, USA, 2008. [Google Scholar]
- Burden, R.L.; Faires, J.D. Numerical Analysis; PWS Publishing Company: Boston, MA, USA, 2001. [Google Scholar]
- Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Loft, T.; Bakhtiari, P.; Cordero, A.; Mahdiani, K.; Torregrosa, J.R. Some new efficient multipoint iterative methods for solving nonlinear systems. Int. J. Comput. Math. 2014, 92, 1921–1934. [Google Scholar]
- Cordero, A.; Hueso, J.L.; Martínez, E.; Torregrosa, J.R. Generating optimal derivative free iterative methods for nonlinear equations by using polynomial interpolation. Math. Comput. Mod. 2013, 57, 1950–1956. [Google Scholar] [CrossRef]
- Ezquerro, J.A.; Grau-Sánchez, M.; Hernández, M.A.; Nouguera, M.; Romero, N. On iterative methods with accelerated convergence for solving systems of nonlinear equations. J. Optim. Theory Appl. 2011, 151, 163–174. [Google Scholar] [CrossRef]
- George, S.; Kanagaraj, K. Derivative free regularization method for nonlinear ill-posed equations in Hilbert scales. Comput. Methods Appl. Math. 2019, 19, 765–778. [Google Scholar] [CrossRef]
- Grau-Sánchez, M.; Noguera, M.; Gutiérrez, J.M. On some computational orders of convergence. Appl. Math. Lett. 2010, 23, 472–478. [Google Scholar] [CrossRef]
- Magreñán, Á.A. A new tool to study real dynamics: The convergence plane. Appl. Math. Comput. 2014, 248, 215–224. [Google Scholar] [CrossRef]
- Shakhno, S.M. Convergence of the two-step combined method and uniqueness of the solution of nonlinear operator equations. J. Comput. Appl. Math. 2014, 261, 378–386. [Google Scholar] [CrossRef]
- Sharma, J.R.; Arora, H. A novel derivative free algorithm with seventh order convergence for solving systems of nonlinear equations. Numer. Algor. 2017, 67, 917–933. [Google Scholar] [CrossRef]
- Rheinboldt, W.C. An Adaptive Continuation Process for Solving Systems of Nonlinear Equations. Banach Cent. Publ. 1978, 3, 129–142. [Google Scholar] [CrossRef]
- Weerakoon, S.; Fernando, T.G.I. A variant of Newton’s method with accelerated third order convergence. Appl. Math. Lett. 2000, 13, 87–93. [Google Scholar] [CrossRef]
- Sauer, T. Numerical Analysis, 2nd ed.; Pearson: Upper Saddle River, NJ, USA, 2012. [Google Scholar]
- Tsoulos, I.G.; Stavrakoudis, A. On locating all roots of systems of nonlinear equations inside bounded domain using global optimization methods. Nonlinear Anal. Real World Appl. 2010, 11, 2465–2471. [Google Scholar] [CrossRef]
- Awawdeh, F. On new iterative method for solving systems of nonlinear equations. Numer. Algor. 2010, 54, 395–409. [Google Scholar] [CrossRef]
Cases | r | |||||||
---|---|---|---|---|---|---|---|---|
of (2) | ||||||||
Case–1 | 0.58198 | 0.3827 | 0.4415 | 0.1966 | 0.1215 | - | - | 0.1215 |
Case–2 | 0.58198 | 0.3827 | 0.4415 | 0.1966 | 0.1215 | 0.1118 | - | 0.1118 |
Case–3 | 0.58198 | 0.3827 | 0.4415 | 0.1966 | 0.1215 | 0.1118 | 0.0923 | 0.0923 |
Cases | m | CPU | ||||
---|---|---|---|---|---|---|
of (2) | Timing | |||||
Case–1 | 4 | 5.0054 | 0.258927 | |||
Case–2 | 3 | 7.0023 | 0.157492 | |||
Case–3 | 3 | 9.0025 | 0.463888 |
Cases | r | |||||||
---|---|---|---|---|---|---|---|---|
Case–1 | 0.2222 | 0.1111 | 0.1481 | 0.07127 | 0.05056 | - | - | 0.05056 |
Case–2 | 0.2222 | 0.1111 | 0.1481 | 0.07127 | 0.05056 | 0.04729 | - | 0.04729 |
Case–3 | 0.2222 | 0.1111 | 0.1481 | 0.07127 | 0.05056 | 0.04729 | 0.04522 | 0.04522 |
Cases | m | CPU | |||
---|---|---|---|---|---|
of (2) | Timing | ||||
Case–1 | 4 | 5.0066 | 93.2924 | ||
Case–2 | 3 | 7.0602 | 30.7952 | ||
Case–3 | 3 | 9.0338 | 62.7814 |
Cases | m | CPU | |||
---|---|---|---|---|---|
of (2) | Timing | ||||
Case–1 | 4 | 4.9945 | 0.401338 | ||
Case–2 | 4 | 6.9966 | 0.924285 | ||
Case–3 | 2 | 9.0008 | 0.358374 |
Cases | m | CPU | |||
---|---|---|---|---|---|
of (2) | Timing | ||||
Case–1 | 4 | 5.0680 | 969.673 | ||
Case–2 | 3 | 7.0599 | 941.422 | ||
Case–3 | 3 | 9.1715 | 1197.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behl, R.; Argyros, I.K.; Alharbi, S. Extended Efficient Multistep Solvers for Solving Equations in Banach Spaces. Mathematics 2024, 12, 1919. https://doi.org/10.3390/math12121919
Behl R, Argyros IK, Alharbi S. Extended Efficient Multistep Solvers for Solving Equations in Banach Spaces. Mathematics. 2024; 12(12):1919. https://doi.org/10.3390/math12121919
Chicago/Turabian StyleBehl, Ramandeep, Ioannis K. Argyros, and Sattam Alharbi. 2024. "Extended Efficient Multistep Solvers for Solving Equations in Banach Spaces" Mathematics 12, no. 12: 1919. https://doi.org/10.3390/math12121919
APA StyleBehl, R., Argyros, I. K., & Alharbi, S. (2024). Extended Efficient Multistep Solvers for Solving Equations in Banach Spaces. Mathematics, 12(12), 1919. https://doi.org/10.3390/math12121919