The Generalized Fox–Wright Function: The Laplace Transform, the Erdélyi–Kober Fractional Integral and Its Role in Fractional Calculus
Abstract
:1. Introduction
2. Basic Properties of the Generalized Fox–Wright Function
- 1.
- If , then the series (3) defines an entire function (that is, it is absolutely convergent for all .
- 2.
- If , then the series (3) defines an analytical function in the open disk , with the radius (that is, it is absolutely convergent for all .
- 3.
- If , then the series (3) converges only at the point 0.
3. Laplace Transform
4. Fractional-Order Integrals of the Generalized Fox–Wright Function
5. Special Cases of the Generalized Fox–Wright Function
5.1. All the Parameters Are Positive Integers
5.2. The Parameters Are Arbitrary Positive
5.3. Cases of I- and -Functions Arising from Applications, Represented as the -Function
6. The Role of the New Special Functions as Eigenfunctions of New Fractional Calculus Operators
7. Conclusions
7.1. Corollaries for the Particular Cases
7.2. On Some Open Problems
7.3. Remarks on Numerical Algorithms for Some General Classes of Special Functions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wright, E.M. On the coefficients of power series having exponential singularities. J. Lond. Math. Soc. 1933, 8, 71–79. [Google Scholar] [CrossRef]
- Wright, E.M. The generalized Bessel function of order greater than one. Quart. J. Math. Oxf. Ser. 1940, 11, 36–48. [Google Scholar] [CrossRef]
- Fox, C. The asymptotic expansion of generalized hypergeometric functons. Proc. Lond. Math. Soc. 1928, s2-27, 389–400. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.; Marichev, O.I. Integrals and Series, Volume 3: More Special Functions; Gordon and Breach Science Publishers: New York, NY, USA; London, UK; Paris, France; Tokyo, Japan, 1992. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman: Harlow, UK; J. Wiley: New York, NY, USA, 1994. [Google Scholar]
- Gorenflo, R.; Luchko, Y.; Mainardi, F. Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 1999, 2, 383–414. [Google Scholar]
- Gorenflo, R.; Kilbas, A.; Mainardi, F.; Rogosin, S. Mittag-Leffler Functions, Related Topics and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.T. (Eds.) Higher Transcendental Functions; McGraw Hill: New York, NY, USA, 1953–1955; Volumes 1–3. [Google Scholar]
- Kiryakova, V. The multi-index Mittag-Leffler functions as important class of special functions of fractional calculus. Comput. Math. Appl. 2010, 59, 1885–1895. [Google Scholar] [CrossRef]
- Kiryakova, V. A guide to special functions in fractional calculus. Mathematics 2021, 9, 106. [Google Scholar] [CrossRef]
- Paneva-Konovska, J. From Bessel to Multi-Index Mittag Leffler Functions: Enumerable Families, Series in them and Convergence, 1st ed.; World Scientific Publishing: London, UK, 2016. [Google Scholar] [CrossRef]
- Kiryakova, V.; Paneva-Konovska, J. After “A Guide to Special Functions in Fractional Calculus”: Going Next. Discussion Survey. Mathematics 2024, 12, 319. [Google Scholar] [CrossRef]
- Rathie, A. A new generalization of the generalized hypergeometric functions. Le Matematiche 1997, LII, 297–310. [Google Scholar]
- Inayat-Hussain, A.A. New properties of hypergeometric series derivable from Feynman integrals: II. A generalization of the H-function. J. Phys. A.: Math. Gen. 1987, 20, 4119–4128. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Markushevich, A. A Theory of Analytic Functions, 1, 2; Nauka: Moscow, Russia, 1967. (In Russian) [Google Scholar]
- Sneddon, I.N. The use in mathematical analysis of Erdélyi-Kober operators and some of their applications. In Fractional Calculus and Its Applications (Proceedings of the International Conference Held in New Haven); Lecture Notes in Mathematics Series, Volume 457; Ross, B., Ed.; Springer: New York, NY, USA, 1975; pp. 37–79. [Google Scholar]
- Kiryakova, V. Fractional calculus operators of special functions?—The result is well predictable! Chaos Solitons Fractals 2017, 102, 2–15. [Google Scholar] [CrossRef]
- Kiryakova, V. Unified approach to fractional calculus images of special functions—A survey. Mathematics 2020, 8, 2260. [Google Scholar] [CrossRef]
- Kilbas, A.A. Fractional calculus of the generalized Wright function. Fract. Calc. Appl. Anal. 2005, 8, 113–126. [Google Scholar]
- Mittag-Leffler, M.G. Sur la nouvelle fonction Eα(x). Comp. Rend. Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Paneva-Konovska, J. Multi-index (3m-parametric) Mittag-Leffler functions and fractional calculus. Compt. Rend. Acad. Bulg. Sci. 2011, 64, 1089–1098. [Google Scholar]
- Paneva-Konovska, J. Prabhakar function of Le Roy type: A set of results in the complex plane. Fract. Calc. Appl. Anal. 2023, 26, 32–53. [Google Scholar] [CrossRef]
- Paneva-Konovska, J. Prabhakar functions of Le Roy type: Inequalities and asymptotic formulae. Mathematics 2023, 11, 3768. [Google Scholar] [CrossRef]
- Paneva-Konovska, J.; Kiryakova, V. On the multi-index Mittag-Leffler functions and their Mellin transforms. Intern. J. Appl. Math. 2020, 33, 549–571. [Google Scholar] [CrossRef]
- Kiryakova, V. Multiple Dzrbashjan-Gelfond-Leontiev fractional differintegrals. Recent Adv. Appl. Math. 1996, 96, 281–294. [Google Scholar]
- Kiryakova, V. Multiindex Mittag-Leffler functions, related Gelfond-Leontiev operators and Laplace type integral transforms. Fract. Calc. Appl. Anal. 1999, 2, 445–462. [Google Scholar]
- Kiryakova, V. Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus. J. Comput. Appl. Math. 2000, 118, 241–259. [Google Scholar] [CrossRef]
- Luchko, Y.F.; Srivastava, H.M. The exact solution of certain differential equations of fractional order by using operational calculus. Comput. Math. Appl. 1995, 29, 73–85. [Google Scholar] [CrossRef]
- Yakubovich, S.; Luchko, Y. The Hypergeometric Approach to Integral Transforms and Convolutions; Mathematics and Its Applications Series, Volume 287; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1994. [Google Scholar]
- Kilbas, A.A.; Koroleva, A.A.; Rogosin, S.V. Multi-parametric Mittag-Leffler functions and their extension. Fract. Calc. Appl. Anal. 2013, 16, 378–404. [Google Scholar] [CrossRef]
- Zayed, M.; Wani, A.A. A study on generalized degenerate form of 2D Appell polynomials via fractional operators. Fractal Fract. 2023, 7, 723. [Google Scholar] [CrossRef]
- Dzrbashjan, M. On the integral transformations generated by the generalized Mittag-Leffler function. Izv. Akad. Nauk Armen. SSR 1960, 13, 21–63. (In Russian) [Google Scholar]
- Le Roy, É. Valéurs asymptotiques de certaines séries procédant suivant les puissances entères et positives d’une variable réelle. Darboux Bull. 1900, 24, 245–268. (In French) [Google Scholar]
- Kolokoltsov, V. The law of large numbers for quantum stochastic filtering and control of many particle systems. Theor. Math. Phys. 2021, 208, 937–957. [Google Scholar] [CrossRef]
- Gerhold, S. Asymptotics for a variant of the Mittag-Leffler function. Integr. Trans. Spec. Func. 2012, 23, 397–403. [Google Scholar] [CrossRef]
- Garra, R.; Polito, F. On some operators involving Hadamard derivatives. Integr. Trans. Spec. Func. 2013, 24, 773–782. [Google Scholar] [CrossRef]
- Garrappa, R.; Rogosin, S.; Mainardi, F. On a generalized three-parameter Wright function of Le Roy type. Fract. Calc. Appl. Anal. 2017, 20, 1196–1215. [Google Scholar] [CrossRef]
- Pogány, T. Integral form of the COM-Poisson renormalization constant. Stat. Probab. Lett. 2016, 119, 144–145. [Google Scholar] [CrossRef]
- Garra, R.; Orsingher, E.; Polito, F. A note on Hadamard fractional differential equations with varying coefficients and their applications in probability. Mathematics 2018, 6, 4. [Google Scholar] [CrossRef]
- Gorska, K.; Horzela, A.; Garrappa, R. Some results on the complete monotonicity of Mittag-Leffler functions of Le Roy type. Fract. Calc. Appl. Anal. 2010, 22, 1284–1306. [Google Scholar] [CrossRef]
- Simon, T. Remark on a Mittag-Leffler function of Le Roy type. Integr. Transf. Spec. Funct. 2022, 33, 108–114. [Google Scholar] [CrossRef]
- Tomovski, Ž.; Mehrez, K. Some families of generalized Mathieu–type power series, associated probability distributions and related inequalities involving complete monotonicity and log–convexity. Math. Inequal. Appl. 2017, 20, 973–986. [Google Scholar] [CrossRef]
- Rogosin, S.; Dubatovskaya, M. Multi-parametric Le Roy function. Fract. Calc. Appl. Anal. 2023, 26, 54–69. [Google Scholar] [CrossRef]
- Rogosin, S.; Dubatovskaya, M. Multi-parametric Le Roy function revisited. Fract. Calc. Appl. Anal. 2024, 27, 64–81. [Google Scholar] [CrossRef]
- Kiryakova, V.; Paneva-Konovska, J. Multi-index Le Roy functions of Mittag-Leffler-Prabhakar type. Intern. J. Appl. Math. 2022, 35, 743–766. [Google Scholar] [CrossRef]
- Paneva-Konovska, J.; Kiryakova, V.; Rogosin, S.; Dubatovskaya, M. Laplace transform (Part 1) of the multi-index Mittag-Leffler-Prabhakar functions of Le Roy type. Intern. J. Appl. Math. 2023, 36, 455–474. [Google Scholar] [CrossRef]
- Kiryakova, V.; Paneva-Konovska, J.; Rogosin, S.; Dubatovskya, M. Erdélyi-Kober fractional integrals (Part 2) of the multi-index Mittag-Leffler-Prabhakar functions of Le Roy type. Intern. J. Appl. Math. 2023, 36, 605–623. [Google Scholar] [CrossRef]
- Pogány, T. Integral form of Le Roy-type hypergeometric function. Integr. Trans. Spec. Func. 2018, 29, 580–584. [Google Scholar] [CrossRef]
- Inayat-Hussain, A.A. New properties of hypergeometric series derivable from Feynman integrals. I. Transformation and reduction formulae. J. Phys. A. Math. Gen. 1987, 20, 4109–4117. [Google Scholar] [CrossRef]
- Marichev, O.I. Handbook of Integral Transforms of Higher Transcendental Functions, Theory and Algorithmic Tables; Ellis Horwood: Chichester, UK, 1983. Transl. from Russian Ed., Method of Evaluation of Integrals of Special Functions; Nauka i Teknika: Minsk, USSR, 1978. (In Russian) [Google Scholar]
- Stivastava, H.M.; Saxena, R.K.; Pogány, T.; Saxena, R. Integral and computational representations of the extended Hurwiz-Lerch zeta function. Integr. Transf. Spec. Func. 2011, 22, 487–506. [Google Scholar] [CrossRef]
- Kiryakova, V. Gel’fond-Leont’ev integration operators of fractional (multi-)order generated by some special functions. Amer. Inst. Phys. Conf. Proc. 2018, 2048, 050016. [Google Scholar] [CrossRef]
- Kalla, S.L. Operators of fractional integration. In Proceedings of the Conference on Analytic Functions, Kozubnik, Poland, 19–25 April 1979; Lecture Notes in Mathematics Series, Volume 798; Springer: Berlin/Heidelberg, Germany, 1980; pp. 258–280. [Google Scholar]
- Marichev, O.I.; Shishkina, E.L. Overview of fractional calculus and its computer implementation in Wolfram Mathematica. arXiv 2023, arXiv:2306.11660. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paneva-Konovska, J.; Kiryakova, V. The Generalized Fox–Wright Function: The Laplace Transform, the Erdélyi–Kober Fractional Integral and Its Role in Fractional Calculus. Mathematics 2024, 12, 1918. https://doi.org/10.3390/math12121918
Paneva-Konovska J, Kiryakova V. The Generalized Fox–Wright Function: The Laplace Transform, the Erdélyi–Kober Fractional Integral and Its Role in Fractional Calculus. Mathematics. 2024; 12(12):1918. https://doi.org/10.3390/math12121918
Chicago/Turabian StylePaneva-Konovska, Jordanka, and Virginia Kiryakova. 2024. "The Generalized Fox–Wright Function: The Laplace Transform, the Erdélyi–Kober Fractional Integral and Its Role in Fractional Calculus" Mathematics 12, no. 12: 1918. https://doi.org/10.3390/math12121918
APA StylePaneva-Konovska, J., & Kiryakova, V. (2024). The Generalized Fox–Wright Function: The Laplace Transform, the Erdélyi–Kober Fractional Integral and Its Role in Fractional Calculus. Mathematics, 12(12), 1918. https://doi.org/10.3390/math12121918