Design and Implementation of Extremum-Seeking Control Based on MPPT for Dual-Axis Solar Tracker
Abstract
:1. Introduction
- Development and experimentation of a novel control strategy for two-axis tracking systems to increase the energy production of conventional photovoltaic technology through the reduction of tracking error based on extremum-seeking control in its basic form.
- Development and testing of dynamic dither signal-management system, adjusting the amplitude of the dither signal based on the calculations of the optimization process, modifying the value concerning the operating conditions of every moment. Thus, instead of performing permanent movements with constant amplitude on the axes consuming unnecessary energy, movement decisions are interpreted only in a virtual environment and executed in reality if necessary.
- Development of an anti-wind-up configuration for PI controller to avoid saturation of the scaling actions of an integral part and obtain behaviors that may affect the actuators, based on saturation and cleaning operations of the integral gain every certain period during operation.
2. Preliminaries
2.1. Solar Tracker Description
2.2. SC Modeling and Problem Formulation
2.3. ESC Algorithm
3. Implementation and Experimental Test of ESC
3.1. Configuration and Implementation of ESC program
- Initiation of parameters and controller gains: from the technical sheets of the motors (to determine their parameters), the proposal of safe values for the PI controller and the analysis of the development time of the tasks, an initial configuration of the ESC is established.
- Test controller and performance monitoring: ST pointing tests are carried out for short periods and through an analysis of the tracking error value, as well as the operation of management system routines, the gain value is updated, until the error value is within the admissible limit. Therefore, it must be taken into account that in the tuning process, the aim is not to perfectly align the SC with the sun, since that would not imply any difference in production; it only seeks to comply with the requirement guaranteed by the MPPT.
3.2. Experimental Results
3.3. Analysis of Results and Discussion
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Experimental Estimation of Υ
System | Energy (Wh/m2) |
---|---|
Pyrheliometer | 6266 |
Pyranometer | 4393 |
ST | 1263.51 |
Fixed SC | 905.97 |
Appendix B. Test in Adverse Weather Conditions
System | AcE (Wh) | ECo (Wh) | FEV (Wh) |
---|---|---|---|
ST | 18.02 | 3.1 | 14.92 |
Fixed SC | 17.68 | N/A | 17.68 |
AAVTE in (°) | AAVTE in (°) | ME (°) |
---|---|---|
4.3536 | 3.7669 | 4.0602 |
References
- Kanoğlu, M.; Çengel, Y.A.; Cimbala, J.M. Fundamentals and Applications of Renewable Energy; McGraw-Hill Education: New York, NY, USA, 2020. [Google Scholar]
- U.S. Energy Information Administration, USA. Available online: https://www.eia.gov (accessed on 8 October 2023).
- Iqbal, M. An Introduction to Solar Radiation; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Abou Jieb, Y.; Hossain, E.; Hossain, E. Photovoltaic Systems: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Prinsloo, G.; Dobson, R. Sun Tracking and Solar Renewable Energy Harvesting: Solar Energy Harvesting, Trough, Pinpointing and Heliostat Solar Collecting Systems; Solar Books: Stellenbosch, South Africa, 2015; pp. 1–542. ISBN 978Y0Y620Y61576Y1. [Google Scholar]
- Leutz, R.; Suzuki, A. Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrators; Springer: Berlin/Heidelberg, Germany, 2012; Volume 83. [Google Scholar]
- Palomino-Resendiz, S.; Flores-Hernández, D.; Cantera-Cantera, L.; Lozada-Castillo, N.; Luviano-Juárez, A. Design and implementation of Model-Based Predictive Control for two-axis Solar Tracker. Sol. Energy 2023, 265, 112080. [Google Scholar] [CrossRef]
- Alam, M.A.; Khan, M.R. Principles of Solar Cells: Connecting Perspectives on Device, System, Reliability and Data Science; World Scientific: Singapore, 2022. [Google Scholar]
- Angulo-Calderón, M.; Salgado-Tránsito, I.; Trejo-Zúñiga, I.; Paredes-Orta, C.; Kesthkar, S.; Díaz-Ponce, A. Development and accuracy assessment of a high-precision dual-axis pre-commercial solar tracker for concentrating photovoltaic modules. Appl. Sci. 2022, 12, 2625. [Google Scholar] [CrossRef]
- Chowdhury, M.S.; Rahman, K.S.; Chowdhury, T.; Nuthammachot, N.; Techato, K.; Akhtaruzzaman, M.; Tiong, S.K.; Sopian, K.; Amin, N. An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Rev. 2020, 27, 100431. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Tan, Q.; Peters, A.L.; Yang, C. Global status of recycling waste solar panels: A review. Waste Manag. 2018, 75, 450–458. [Google Scholar] [CrossRef]
- Turney, D.; Fthenakis, V. Environmental impacts from the installation and operation of large-scale solar power plants. Renew. Sustain. Energy Rev. 2011, 15, 3261–3270. [Google Scholar] [CrossRef]
- Huang, W.H.; Shin, W.J.; Wang, L.; Sun, W.C.; Tao, M. Strategy and technology to recycle wafer-silicon solar modules. Sol. Energy 2017, 144, 22–31. [Google Scholar] [CrossRef]
- Flores-Hernández, D.; Palomino-Resendiz, S.; Lozada-Castillo, N.; Luviano-Juárez, A.; Chairez, I. Mechatronic design and implementation of a two axes sun tracking photovoltaic system driven by a robotic sensor. Mechatronics 2017, 47, 148–159. [Google Scholar] [CrossRef]
- Flores-Hernández, D.A.; Palomino-Resendiz, S.I.; Luviano-Juárez, A.; Lozada-Castillo, N.; Gutierrez-Frias, O. A heuristic approach for tracking error and energy consumption minimization in solar tracking systems. IEEE Access 2019, 7, 52755–52768. [Google Scholar] [CrossRef]
- Palomino-Resendiz, S.I.; Ortiz-Martínez, F.A.; Paramo-Ortega, I.V.; González-Lira, J.M.; Flores-Hernández, D.A. Optimal Selection of the Control Strategy for Dual-Axis Solar Tracking Systems. IEEE Access 2023. [Google Scholar] [CrossRef]
- Ozcelik, S.; Prakash, H.; Challoo, R. Two-axis solar tracker analysis and control for maximum power generation. Procedia Comput. Sci. 2011, 6, 457–462. [Google Scholar] [CrossRef]
- Fam, D.; Koh, S.; Kiong, T.S.; Chong, K.H. Optimization variation for multiple heuristic approaches in solar tracking. Key Eng. Mater. 2011, 480, 1085–1090. [Google Scholar] [CrossRef]
- Verma, P.; Alam, A.; Sarwar, A.; Tariq, M.; Vahedi, H.; Gupta, D.; Ahmad, S.; Shah Noor Mohamed, A. Meta-heuristic optimization techniques used for maximum power point tracking in solar pv system. Electronics 2021, 10, 2419. [Google Scholar] [CrossRef]
- Alrubaie, A.J.; Al-Khaykan, A.; Malik, R.; Talib, S.H.; Mousa, M.I.; Kadhim, A.M. Review on MPPT techniques in solar system. In Proceedings of the 2022 8th International Engineering Conference on Sustainable Technology and Development (IEC). IEEE, Erbil, Iraq, 23–24 February 2022; pp. 123–128. [Google Scholar]
- Ali, A.N.A.; Saied, M.H.; Mostafa, M.Z.; Abdel-Moneim, T.M. A survey of maximum PPT techniques of PV systems. In Proceedings of the 2012 IEEE Energytech, Cleveland, OH, USA, 29–31 May 2012; pp. 1–17. [Google Scholar]
- Karami, N.; Moubayed, N.; Outbib, R. General review and classification of different MPPT Techniques. Renew. Sustain. Energy Rev. 2017, 68, 1–18. [Google Scholar] [CrossRef]
- Palomino-Resendiz, S.I.; Flores-Hernández, D.A.; Lozada-Castillo, N.; Luviano-Juárez, A. High-precision luminosity sensor for solar applications. IEEE Sens. J. 2019, 19, 12454–12464. [Google Scholar] [CrossRef]
- Amir, A.; Selvaraj, J.; Rahim, N.A. Study of the MPP tracking algorithms: Focusing the numerical method techniques. Renew. Sustain. Energy Rev. 2016, 62, 350–371. [Google Scholar] [CrossRef]
- Podder, A.K.; Roy, N.K.; Pota, H.R. MPPT methods for solar PV systems: A critical review based on tracking nature. IET Renew. Power Gener. 2019, 13, 1615–1632. [Google Scholar] [CrossRef]
- Tina, G.M.; Arcidiacono, F.; Gagliano, A. Intelligent sun-tracking system based on multiple photodiode sensors for maximisation of photovoltaic energy production. Math. Comput. Simul. 2013, 91, 16–28. [Google Scholar] [CrossRef]
- Kasa, N.; Iida, T.; Chen, L. Flyback inverter controlled by sensorless current MPPT for photovoltaic power system. IEEE Trans. Ind. Electron. 2005, 52, 1145–1152. [Google Scholar] [CrossRef]
- Salgado-Conrado, L. A review on sun position sensors used in solar applications. Renew. Sustain. Energy Rev. 2018, 82, 2128–2146. [Google Scholar] [CrossRef]
- Averbukh, M.; Ben-Galim, Y.; Uhananov, A. Development of a quick dynamic response maximum power point tracking algorithm for off-grid system with adaptive switching (On–Off) control of dc/dc converter. J. Sol. Energy Eng. 2013, 135, 021003. [Google Scholar] [CrossRef]
- Khaled, A.; Aboubakeur, H.; Mohamed, B.; Nabil, A. A fast MPPT control technique using PID controller in a photovoltaic system. In Proceedings of the 2018 International Conference on Applied Smart Systems (ICASS), Medea, Algeria, 24–25 November 2018; pp. 1–5. [Google Scholar]
- Harrag, A.; Messalti, S. Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller. Renew. Sustain. Energy Rev. 2015, 49, 1247–1260. [Google Scholar]
- Ariyur, K.B.; Krstic, M. Real-Time Optimization by Extremum-Seeking Control; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Katsanikakis, A.; Bechlioulis, C.P. Design and Implementation of an Energy-Efficient Vehicle Platoon Control Algorithm Using Prescribed Performance and Extremum Seeking Control. Appl. Sci. 2023, 13, 5650. [Google Scholar] [CrossRef]
- Krstic, M.; Ghaffari, A.; Seshagiri, S. Extremum seeking for wind and solar energy applications. In Proceedings of the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June–4 July 2014; pp. 6184–6193. [Google Scholar]
- Leyva, R.; Alonso, C.; Queinnec, I.; Cid-Pastor, A.; Lagrange, D.; Martinez-Salamero, L. MPPT of photovoltaic systems using extremum-seeking control. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 249–258. [Google Scholar] [CrossRef]
- Tan, Y.; Moase, W.H.; Manzie, C.; Nešić, D.; Mareels, I.M. Extremum seeking from 1922 to 2010. In Proceedings of the 29th Chinese Control Conference, Beijing, China, 29–31 July 2010; pp. 14–26. [Google Scholar]
- Metry, M.; Shadmand, M.B.; Balog, R.S.; Abu-Rub, H. MPPT of photovoltaic systems using sensorless current-based model predictive control. IEEE Trans. Ind. Appl. 2016, 53, 1157–1167. [Google Scholar] [CrossRef]
- Fatemi, S.M.; Shadlu, M.S.; Talebkhah, A. A new method for maximum power point tracking in solar PV systems by combining extremum seeking method (ESM) and model predictive control (MPC). In Proceedings of the 2020 11th Power Electronics, Drive Systems and Technologies Conference (PEDSTC), Tehran, Iran, 4–6 February 2020; pp. 1–5. [Google Scholar]
- Moura, S.J.; Chang, Y.A. Lyapunov-based switched extremum seeking for photovoltaic power maximization. Control Eng. Pract. 2013, 21, 971–980. [Google Scholar] [CrossRef]
- Zou, Y.; Tan, W.; Jin, X.; Wang, Z. An active disturbance rejection control of large wind turbine pitch angle based on extremum-seeking algorithm. Energies 2022, 15, 2846. [Google Scholar] [CrossRef]
- Sahu, J.K.; Mishra, S.K.; Patra, J.P. MPPT Extremum Seeking Control Algorithm for Standalone PV System. In Proceedings of the 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 23–25 January 2023; pp. 156–160. [Google Scholar]
- Senthilkumar, S.; Mohan, V.; Deepa, R.; Nuthal Srinivasan, M.; Senthil Kumar, T.; Thanikanti, S.; Prathap, N. A review on MPPT algorithms for solar PV systems. Int. J. Res. Granthaalayah 2023, 11, 25–64. [Google Scholar] [CrossRef]
- Bizon, N. Global Maximum Power Point Tracking (GMPPT) of Photovoltaic array using the Extremum Seeking Control (ESC): A review and a new GMPPT ESC scheme. Renew. Sustain. Energy Rev. 2016, 57, 524–539. [Google Scholar] [CrossRef]
- Bratcu, A.I.; Munteanu, I.; Bacha, S.; Raison, B. Maximum power point tracking of grid-connected photovoltaic arrays by using extremum seeking control. J. Control Eng. Appl. Inform. 2008, 10, 3–12. [Google Scholar]
- Heydari-doostabad, H.; Keypour, R.; Khalghani, M.R.; Khooban, M.H. A new approach in MPPT for photovoltaic array based on extremum seeking control under uniform and non-uniform irradiances. Sol. Energy 2013, 94, 28–36. [Google Scholar] [CrossRef]
- Menadi, A.; Boukahil, F.Z.; Betka, A. Real-Time Implementation of a Hybrid ESC Approach for Maximising the Extracted Photovoltaic Power Under Partial Shading Conditions. Power Electron. Drives 2024, 9, 191–204. [Google Scholar] [CrossRef]
- Rasheed, M.; Shihab, S. Analytical Modeling of Solar Cells. Insight-Electronic 2019. [Google Scholar] [CrossRef]
- Álvarez, J.M.; Alfonso-Corcuera, D.; Roibás-Millán, E.; Cubas, J.; Cubero-Estalrrich, J.; Gonzalez-Estrada, A.; Jado-Puente, R.; Sanabria-Pinzón, M.; Pindado, S. Analytical modeling of current-voltage photovoltaic performance: An easy approach to solar panel behavior. Appl. Sci. 2021, 11, 4250. [Google Scholar] [CrossRef]
- Amajama, J. Effect of Solar Illuminance (or Intensity) on Solar (Photovoltaic) cell’s output and the use of Converging lenses and X or Gamma rays to enhance output performance. Int. J. Eng. Res. Gen. Sci. 2016, 4, 284–289. [Google Scholar]
- Smestad, G.; Ries, H. Luminescence and current-voltage characteristics of solar cells and optoelectronic devices. Sol. Energy Mater. Sol. Cells 1992, 25, 51–71. [Google Scholar] [CrossRef]
- Hayat, M.B.; Ali, D.; Monyake, K.C.; Alagha, L.; Ahmed, N. Solar energy—A look into power generation, challenges and a solar-powered future. Int. J. Energy Res. 2019, 43, 1049–1067. [Google Scholar] [CrossRef]
- Wang, A.; Xuan, Y. A detailed study on loss processes in solar cells. Energy 2018, 144, 490–500. [Google Scholar] [CrossRef]
- Keitz, H.; Keitz, H. Luminous Flux, Luminous Intensity, Quantity of Light. In Light Calculations and Measurements: An Introduction to the System of Quantities and Units in Light-Technology and to Photometry; Red Globe Press London: London, UK, 1971; Available online: https://link.springer.com/book/10.1007/978-1-349-00012-8 (accessed on 9 February 2024).
- WILSON, D. BASIC SERVOMECHANISM THEORY. Mod. Pract. Servo Des. Int. Ser. Monogr. Electr. Eng. 2013, 2, 1. [Google Scholar]
- Azar, A.T.; Serrano, F.E. Design and modeling of anti wind up PID controllers. In Complex System Modelling and Control through Intelligent Soft Computations; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–44. [Google Scholar]
- Glattfelder, A.; Schaufelberger, W. Start-up performance of different proportional-integral-anti-wind-up regulators. Int. J. Control 1986, 44, 493–505. [Google Scholar] [CrossRef]
- Poznyak, A.S. Advanced Mathematical Tools for Control Engineers: Volume 1: Deterministic Systems; Elsevier: Amsterdam, The Netherlands, 2010; Volume 1. [Google Scholar]
- Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory; SIAM: Philadelphia, PA, USA, 1994. [Google Scholar]
- Bucz, Š.; Kozáková, A. Advanced methods of PID controller tuning for specified performance. PID Control Ind. Process. 2018, 73–119. [Google Scholar] [CrossRef]
- AccuWeather. Available online: https://www.accuweather.com/ (accessed on 9 February 2024).
- Martín, P.F.G. Energía Solar Fotovoltaica Para Todos; Marcombo: Barcelona, Spain, 2021. [Google Scholar]
- Waijung Blockset. Available online: https://waijung1.aimagin.com/ (accessed on 9 February 2024).
- Gobilda. Available online: https://www.gobilda.com/ (accessed on 9 February 2024).
- Mousazadeh, H.; Keyhani, A.; Javadi, A.; Mobli, H.; Abrinia, K.; Sharifi, A. A review of principle and sun-tracking methods for maximizing solar systems output. Renew. Sustain. Energy Rev. 2009, 13, 1800–1818. [Google Scholar] [CrossRef]
System | AcE (Wh) | ECo (Wh) | FEV (Wh) |
---|---|---|---|
ST | 250.2 | 21 | 229.2 |
Fixed SC | 179.4 | NA | 179.4 |
(°) | (°) | ME (°) |
---|---|---|
1.3543 | 2.2373 | 1.8636 |
(%) | (%) |
---|---|
81.5 | 47.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solís-Cervantes, C.U.; Palomino-Resendiz, S.I.; Flores-Hernández, D.A.; Peñaloza-López, M.A.; Montelongo-Vazquez, C.M. Design and Implementation of Extremum-Seeking Control Based on MPPT for Dual-Axis Solar Tracker. Mathematics 2024, 12, 1913. https://doi.org/10.3390/math12121913
Solís-Cervantes CU, Palomino-Resendiz SI, Flores-Hernández DA, Peñaloza-López MA, Montelongo-Vazquez CM. Design and Implementation of Extremum-Seeking Control Based on MPPT for Dual-Axis Solar Tracker. Mathematics. 2024; 12(12):1913. https://doi.org/10.3390/math12121913
Chicago/Turabian StyleSolís-Cervantes, Cesar Ulises, Sergio Isai Palomino-Resendiz, Diego Alonso Flores-Hernández, Marco Antonio Peñaloza-López, and Carlos Manuel Montelongo-Vazquez. 2024. "Design and Implementation of Extremum-Seeking Control Based on MPPT for Dual-Axis Solar Tracker" Mathematics 12, no. 12: 1913. https://doi.org/10.3390/math12121913
APA StyleSolís-Cervantes, C. U., Palomino-Resendiz, S. I., Flores-Hernández, D. A., Peñaloza-López, M. A., & Montelongo-Vazquez, C. M. (2024). Design and Implementation of Extremum-Seeking Control Based on MPPT for Dual-Axis Solar Tracker. Mathematics, 12(12), 1913. https://doi.org/10.3390/math12121913