Some Results on Coefficient Estimate Problems for Four-Leaf-Type Bounded Turning Functions
Abstract
:1. Introduction and Definitions
2. The Bounds of the Third Hankel Determinant for
- (1)
- For ,
- (2)
- For ,
- (3)
- For ,
- (a)
- For ,
- (b)
- For ,
- (c)
- For ,
- (1)
- For ,It is evident that there is on point in .
- (2)
- For ,
- (3)
- For ,
- (4)
- For ,
- (5)
- For
- (6)
- For ,
- (7)
- For ,
- (8)
- For ,
- (9)
- For and ,
- (10)
- For
- (1)
- For ,
- (2)
- For ,
- (3)
- For ,
- (4)
- For ,
- (5)
- For ,
- (6)
- For ,
- (7)
- For ,
- (8)
- For and ,
- (9)
- For and ,
- (10)
- For and ,
3. The Bounds of the Logarithmic Coefficients for
- (1)
- For ,
- (2)
- For ,
- (3)
- For ,
- (1)
- For ,
- (2)
- For ,
- (3)
- For ,
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, S1–41, 111–122. [Google Scholar] [CrossRef]
- Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
- Babalola, K.O. On H3(1) Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 2010, 6, 1–7. [Google Scholar]
- Banga, S.; Kumar, S.S. The sharp bounds of the second and third Hankel determinats for the class L*. Math. Slovaca 2020, 70, 849–862. [Google Scholar] [CrossRef]
- Riaz, A.; Raza, M.; Binyamin, M.A.; Saliu, A. The second and third Hankel determinants for starlike and convex functions associated with three-leaf function. Heliyon 2023, 9, e12748. [Google Scholar] [CrossRef]
- Riaz, A.; Raza, M.; Thomas, D.K. The third Hankel determinant for starlike functions associated with sigmoid functions. Forum Math. 2022, 34, 137–156. [Google Scholar] [CrossRef]
- Riaz, A.; Raza, M. The third Hankel determinant for starlike and convex functions associated with lune. Bull. Des Sci. Math. 2023, 183, 103289. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Thomas, D.K. The sharp bound of the third Hankel determinant for Convex functions of order −1/2. J. Math. Inequal. 2023, 17, 191–204. [Google Scholar] [CrossRef]
- Wang, Z.G.; Raza, M.; Arif, M.; Ahmad, K. On the Third and Fourth Hankel Determinants for a Subclass of Analytic Functions. Bull. Malays. Math. Sci. Soc. 2022, 45, 323–359. [Google Scholar] [CrossRef]
- Shi, L.; Arif, M. Certain Sharp Coefficient Results on a Subclass of Starlike Functions Defined by the Quotient of Analytic Functions. Fractal Fract. 2023, 7, 195. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Funtions; Springer: New York, NY, USA, 1983. [Google Scholar]
- Sunthrayuth, P.; Jawarneh, Y.; Naeem, M.; Iqbal, N. Some sharp results on coefficient estimate problems for four-leaf-type bounded turning functions. J. Funct. Spaces 2022, 2022, 8356125. [Google Scholar] [CrossRef]
- Carlson, F. Sur les coeffcients d’une fonction bornée dans le cercle unité. Ark. Mat. Astr. Fys. A 1940, 27, 8. [Google Scholar]
- Zaprawa, P. Inequalities for the Coefficients of Schwarz Functions. Bull. Korean Math. Soc. 2023, 46, 144. [Google Scholar] [CrossRef]
- Zaprawa, P. On a coefficient inequality for Carathéodory Functions. Results Math. 2024, 79, 30. [Google Scholar] [CrossRef]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Prokhorov, D.V.; Szynal, J. Inverse coefficients for (α, β)-convex functions. Ann. Univ. Mariae Curie-Sklodowska 1981, 35, 125–143. [Google Scholar]
- Efraimidis, I. A generalization of Livingston’s coefficient inequalities for functions with positive real part. J. Math. Anal. Appl. 2016, 435, 369–379. [Google Scholar] [CrossRef]
- Zaprawa, P. Initial logarithmic coefficients for functions starlike with respect to symmetric points. Bol. Soc. Mat. Mex. 2021, 27, 62. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, C.; Li, Z.; Guo, D. Some Results on Coefficient Estimate Problems for Four-Leaf-Type Bounded Turning Functions. Mathematics 2024, 12, 1875. https://doi.org/10.3390/math12121875
Wen C, Li Z, Guo D. Some Results on Coefficient Estimate Problems for Four-Leaf-Type Bounded Turning Functions. Mathematics. 2024; 12(12):1875. https://doi.org/10.3390/math12121875
Chicago/Turabian StyleWen, Chuanjun, Zongtao Li, and Dong Guo. 2024. "Some Results on Coefficient Estimate Problems for Four-Leaf-Type Bounded Turning Functions" Mathematics 12, no. 12: 1875. https://doi.org/10.3390/math12121875
APA StyleWen, C., Li, Z., & Guo, D. (2024). Some Results on Coefficient Estimate Problems for Four-Leaf-Type Bounded Turning Functions. Mathematics, 12(12), 1875. https://doi.org/10.3390/math12121875