A Linear Stabilized Incompressible Magnetohydrodynamic Problem with Magnetic Pressure
Abstract
:1. Introduction
2. Magnetohydrodynamic Differential Equations and Preliminaries
2.1. Flowchart
2.2. The Strong Form
2.3. Problem Linearization
2.4. Weak Formulation
2.5. Solenoidal Function Spaces
3. Finite Element Spatial Discretization
The Finite Element Stabilized Method
4. Existence, Uniqueness, and Error Bound
Optimal Error Estimate
5. Numerical Tests
5.1. Analytical Solution Test
5.2. Convergence Test
- Divergence of Non-stabilized Pressure Error: The error line E3, which represents the case without the stabilization term, diverges significantly from the other error lines. This indicates a clear lack of convergence, representing that the non-stabilized scheme fails to maintain an optimal error decay rate for pressure terms.
- Optimal Decay for Stabilized Schemes: Even for the cases with stabilization (E1 and E2), the error decay aligns with the dotted line representing the optimal error rate. Although the errors for E1 and E2 are consistently parallel to each other, suggesting similar convergence behaviors, they reach the optimal rate with the same behavior (parallel way).
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aydin, S.H.; Nesliturk, A.; Tezer-Sezgin, M. Two-level finite element method with a stabilizing subgrid for the incompressible mhd equations. Int. J. Numer. Methods Fluids 2010, 62, 188–210. [Google Scholar] [CrossRef]
- Huang, Y.; Qiu, W.; Sun, W. New analysis of mixed finite element methods for incompressible magnetohydrodynamics. J. Sci. Compit. 2023, 95, 72. [Google Scholar] [CrossRef]
- Badia, S.; Planas, R.; Gutiérrez-Santacreu, J.V. Unconditionally stable operator splitting algorithms for the incompressible magnetohydrodynamics system discretized by a stabilized finite element formulation based on projections. Int. J. Numer. Methods Eng. 2013, 93, 302–328. [Google Scholar] [CrossRef]
- Greif, C.; Li, D.; Schotzau, D.; Wei, X. A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Engrg. 2010, 199, 2840–2855. [Google Scholar] [CrossRef]
- Salah, N.B.; Soulaimani, A.; Habashi, W.G.; Fortin, M. A conservative stabilized finite element method for the magneto-hydrodynamic equations. Int. J. Numer. Methods Fluids 1999, 29, 535–554. [Google Scholar] [CrossRef]
- Houston, P.; Schötzau, D.; Wei, X. A mixed DG method for linearized incompressible magnetohydrodynamics. J. Sci. Comput. 2009, 40, 281–314. [Google Scholar] [CrossRef]
- Hasler, U.; Schneebeli, A.; Schotzau, D. Mixed finite element approximation of incompressible MHD problems based on weighted regularization. Appl. Numer. Math. 2004, 51, 19–45. [Google Scholar] [CrossRef]
- Gunzburger, M.D.; Meir, A.J.; Peterson, J.S. On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics. Math. Comput. 1991, 194, 523–563. [Google Scholar] [CrossRef]
- Belenli, M.A.; Kaya, S.; Rebholz, L.G.; Wilson, N.E. A subgrid stabilization finite element method for incompressible magnetohydrodynamics. Int. J. Comput. Math. 2013, 90, 1506–1523. [Google Scholar] [CrossRef]
- Hussain, S.; Rahman, S.; Abbas, S.; Abbas, M.A. Solution of steady incompressible MHD problem with quasi least square method. Invention 2022, 7, 40. [Google Scholar] [CrossRef]
- Hussain, S.; Mahbub, M.A.A.; Nasu, N.J.; Zheng, H.B. Stabilized lowest equal order mixed finite element method for the Oseen viscoelastic fluid flow. Adv. Differ. Eq. 2018, 461, 1–19. [Google Scholar] [CrossRef]
- Hussain, S.; Batool, A.; Mahbub, M.A.A.; Nasu, N.J.; Yu, J. SUPG Approximation for the Oseen Viscoelastic Fluid Flow with Stabilized Lowest-Equal Order Mixed Finite Element Method. Mathematics 2019, 7, 128. [Google Scholar] [CrossRef]
- Bochev, P.B.; Dohrmann, C.R.; Gunzburger, M. Stabilization of low order mixed finite elements for the Stokes equations. SIAM J. Number. Anal. 2006, 44, 82–101. [Google Scholar] [CrossRef]
- Gerbeau, J.F. A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 2000, 87, 83–111. [Google Scholar] [CrossRef]
- Akbas, M.; Kaya, S.; Mohebujjaman, M.; Rebholz, L. Numerical analysis and testing of a fully discrete, decoupled penalty-projection algorithm for MHD in elsasser variable. Int. J. Numer. Anal. Model. 2016, 13, 113. [Google Scholar]
- Heister, T.; Mohebujjaman, M.; Rebholz, L. Decoupled, unconditionally stable, higher order discretizations for MHD flow simulation. J. Sci. Comput. 2017, 71, 21–43. [Google Scholar] [CrossRef]
- Brackbill, J.; Barnes, D. The effect of nonzero ∇ · = 0 on the numerical solution of the magnetohydrodynamics equations. J. Comp. Phys. 1980, 35, 426–430. [Google Scholar] [CrossRef]
- He, Y.N.; Zou, J. A priori estimates and optimal finite element approximation of MHD flow in smooth domains. ESIAM Math Model. Numer. Anal. 2018, 52, 181–206. [Google Scholar] [CrossRef]
- Dong, X.; He, Y. A parallel finite element method for incompressible magnetohydrodynamics equations. App. Math. Lett. 2020, 102, 106076. [Google Scholar] [CrossRef]
- Zhang, G.D.; He, Y.N.; Yang, D. Analysis of coupling iterations based on finite element method for stationary magnetohydrodynamics on a general domain. Comput. Math. Appl. 2014, 68, 770788. [Google Scholar] [CrossRef]
- Codina, R.; Hernandez, N. Stabilized finite element approximation of the stationary MHD equations. Comput. Mech. 2006, 38, 344–355. [Google Scholar] [CrossRef]
- Adams, R.A. Sobolev Space. Pure and Applied Mathematics; Academic Press: New York, NY, USA, 1975; Volume 65. [Google Scholar]
- Schötzau, D. Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math. 2004, 96, 771–800. [Google Scholar] [CrossRef]
- Xu, J.C.; Zhou, A.H. Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. 2000, 69, 881–909. [Google Scholar] [CrossRef]
- Brezzi, F.; Fortin, M. Mixed and Hybrid Finite Element Methods; Springer Series in Computational Mathematics; Springer: New York, NY, USA, 1991. [Google Scholar]
- Hughes, T.J.R.; Franca, L. A new finite element formulation for CFD: VII. The Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces. Comput. Methods Appl. Mech. Engrg. 1987, 65, 85–96. [Google Scholar] [CrossRef]
- Li, J.; He, Y.; Chen, Z. A new stabilized finite element method for the transient Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 2007, 197, 22–35. [Google Scholar] [CrossRef]
- Zheng, H.; Hou, Y. A Quadratic equal-order stabilized method for Stokes problem based on two local Gauss integration. Nonlinear. Anal. 2009, 26, 180–1190. [Google Scholar] [CrossRef]
- Li, J.; He, Y. A stabilized finite element method based on two local gauss integration for the Stokes equation. J. Comput. Appl. Math. 2008, 214, 58–65. [Google Scholar] [CrossRef]
- Fernandes, P.; Gilardi, G. Magnetostatic and electrostatic problems in inhomogeneous Anisortopic Media with irregular Boundary and Mixed boundary Conditions. Math. Models Methods Appl. Sci. 1997, 7, 957–991. [Google Scholar] [CrossRef]
- Monk, P. Finite Element Methods for Maxwell’s Equations; Oxford Univeristy Press: New York, NY, USA, 2003. [Google Scholar]
- Planas, R.; Badia, S.; Codina, R. Approximation of the inductionless MHD problem using a stabilized finite element method. J. Comput. Phys. 2011, 230, 2977–2996. [Google Scholar] [CrossRef]
- Hecht, F. FreeFEM++. J. Numer. Math. 2012, 20, 251–265. [Google Scholar] [CrossRef]
- Liu, S.; Huang, P. A sparse grad-div stabilized algorithm for the incompressible magnetohydrodynamicss equations. Comput. Math. Appl. 2023, 138, 106–119. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, T. Stability and convergence of iterative finite element methods for themally coupled incompressible MHD flow. Int. J. Numr. Method. Heat Fluid Flow 2020, 30, 5103–5141. [Google Scholar] [CrossRef]
h | ||||
---|---|---|---|---|
0.22122 | 0.20562 | 0.12221 | 0.30452 | |
0.10267 | 0.06430 | 0.04332 | 0.07430 | |
0.04883 | 0.02187 | 0.01579 | 0.03188 | |
0.02390 | 0.00724 | 0.00621 | 0.00734 | |
0.01185 | 0.00247 | 0.00253 | 0.00249 |
h | ||||
---|---|---|---|---|
0.235998 | 1.78225 | 0.189812 | 1.682253 | |
0.133753 | 0.97397 | 0.176594 | 0.454795 | |
0.051102 | 0.56637 | 0.045024 | 0.365765 | |
0.013276 | 0.534318 | 0.060156 | 0.214255 | |
0.015074 | 0.257345 | 0.024291 | 0.142583 |
h | ||||
---|---|---|---|---|
0.235997 | 1.781253 | 0.179617 | 1.678122 | |
0.123752 | 0.963972 | 0.066592 | 0.86453 | |
0.061101 | 0.547781 | 0.025024 | 0.464631 | |
0.030274 | 0.343097 | 0.010154 | 0.245765 | |
0.014073 | 0.246215 | 0.004292 | 0.132873 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, S.; Bakhet, A.; AlNemer, G.; Zakarya, M. A Linear Stabilized Incompressible Magnetohydrodynamic Problem with Magnetic Pressure. Mathematics 2024, 12, 1839. https://doi.org/10.3390/math12121839
Hussain S, Bakhet A, AlNemer G, Zakarya M. A Linear Stabilized Incompressible Magnetohydrodynamic Problem with Magnetic Pressure. Mathematics. 2024; 12(12):1839. https://doi.org/10.3390/math12121839
Chicago/Turabian StyleHussain, Shahid, Ahmed Bakhet, Ghada AlNemer, and Mohammed Zakarya. 2024. "A Linear Stabilized Incompressible Magnetohydrodynamic Problem with Magnetic Pressure" Mathematics 12, no. 12: 1839. https://doi.org/10.3390/math12121839
APA StyleHussain, S., Bakhet, A., AlNemer, G., & Zakarya, M. (2024). A Linear Stabilized Incompressible Magnetohydrodynamic Problem with Magnetic Pressure. Mathematics, 12(12), 1839. https://doi.org/10.3390/math12121839