Spatially-Periodic Solutions for Evolution Anisotropic Variable-Coefficient Navier–Stokes Equations: I. Weak Solution Existence
Abstract
1. Introduction
2. Periodic Function Spaces
3. Weak Formulation of the Evolution Spatially-Periodic Anisotropic Navier–Stokes Problem
4. Weak Solution Existence
- Step (a)
- Step (b)
- Step (c)
- Step (d)
5. Auxiliary Results
5.1. Advection Term Properties
5.2. Some Point-Wise Multiplication Results
- (a)
- (b)
5.3. Spectrum of the Periodic Bessel Potential Operator
5.4. Isomorphism of Divergence and Gradient Operators in Periodic Spaces
5.5. Some Functional Analysis Results
Funding
Data Availability Statement
Conflicts of Interest
References
- Constantin, P.; Foias, C. Navier–Stokes Equations; The University of Chicago Press: Chicago, IL, USA; London, UK, 1988. [Google Scholar]
- Galdi, G.P. An Introduction to the Mathematical Theory of the Navier—Stokes Equations. Steady-State Problems, 2nd ed.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Ladyzhenskaya, O.A. Mathematical Problems of the Dynamics of Viscous Incompressible Fluids, 2nd ed.; Gordon and Breach: New York, NY, USA, 1969. [Google Scholar]
- Lemarie-Rieusset, P.G. The Navier–Stokes Problem in the 21st Century; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2016. [Google Scholar]
- Lions, J.-L. Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires; Dunod: Paris, France, 1969. [Google Scholar]
- Robinson, J.C.; Rodrigo, J.L.; Sadowski, W. The Three—Dimensional Navier–Stokes Equations. Classical Theory; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Seregin, G. Lecture Notes on Regularity Theory for the Navier–Stokes Equations; World Scientific: London, UK, 2015. [Google Scholar]
- Sohr, H. The Navier–Stokes Equations: An Elementary Functional Analytic Approach; Springer: Basel, Switzerland, 2001. [Google Scholar]
- Temam, R. Navier–Stokes Equations and Nonlinear Functional Analysis; SIAM: Philadelphia, PA, USA, 1995. [Google Scholar]
- Temam, R. Navier–Stokes Equations. Theory and Numerical Analysis; AMS Chelsea Edition; American Mathematical Society: Providence, RI, USA, 2001. [Google Scholar]
- Duffy, B.R. Flow of a liquid with an anisotropic viscosity tensor. J. Nonnewton. Fluid Mech. 1978, 4, 177–193. [Google Scholar] [CrossRef]
- Kohr, M.; Mikhailov, S.E.; Wendland, W.L. Potentials and transmission problems in weighted Sobolev spaces for anisotropic Stokes and Navier–Stokes systems with L∞ strongly elliptic coefficient tensor. Complex Var. Elliptic Equ. 2020, 65, 109–140. [Google Scholar] [CrossRef]
- Kohr, M.; Mikhailov, S.E.; Wendland, W.L. Dirichlet and transmission problems for anisotropic Stokes and Navier–Stokes systems with L∞ tensor coefficient under relaxed ellipticity condition. Discrete Contin. Dyn. Syst. Ser. A. 2021, 41, 4421–4460. [Google Scholar] [CrossRef]
- Kohr, M.; Mikhailov, S.E.; Wendland, W.L. Layer potential theory for the anisotropic Stokes system with variable L∞ symmetrically elliptic tensor coefficient. Math. Meth. Appl. Sci. 2021, 44, 9641–9674. [Google Scholar] [CrossRef]
- Kohr, M.; Mikhailov, S.E.; Wendland, W.L. Non-homogeneous Dirichlet-transmission problems for the anisotropic Stokes and Navier–Stokes systems in Lipschitz domains with transversal interfaces. Calc. Var. Pdes 2022, 61, 47. [Google Scholar] [CrossRef]
- Mikhailov, S.E. Periodic Solutions in Rn for Stationary Anisotropic Stokes and Navier–Stokes Systems. In Integral Methods in Science and Engineering; Springer Nature: Berlin, Germany, 2022; Chapter 16; pp. 227–243. [Google Scholar]
- Mikhailov, S.E. Stationary Anisotropic Stokes, Oseen and Navier–Stokes Systems: Periodic Solutions in Rn. Math. Methods Appl. Sci. 2023, 46, 10903–10928. [Google Scholar] [CrossRef]
- Oleinik, O.A.; Shamaev, A.S.; Yosifian, G.A. Mathematical Problems in Elasticity and Homogenization; Horth-Holland: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Agmon, S. Lectures on Elliptic Boundary Value Problems; Van Nostrand: New York, NY, USA, 1965. [Google Scholar]
- Agranovich, M.S. Sobolev Spaces, Their Generalizations, and Elliptic Problems in Smooth and Lipschitz Domains; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- McLean, W. Local and global descriptions of periodic pseudodifferential operators. Math. Nachr. 1991, 150, 151–161. [Google Scholar] [CrossRef]
- Ruzhansky, M.; Turunen, V. Pseudo-Differential Operators and Symmetries: Background Analysis and Advanced Topics; Birkhäuser: Basel, Switzerland, 2010. [Google Scholar]
- Zygmund, A. Trigonometric Series, 3rd ed.; Cambridge Univ. Press: Cambridge, UK, 2002; Volume II. [Google Scholar]
- McLean, W. Strongly Elliptic Systems and Boundary Integral Equations; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Renardy, M.; Rogers, R.C. An Introduction to Partial Differential Equations; Springer: Berlin, Germany, 2004. [Google Scholar]
- Lions, J.-L.; Magenes, E. Non-Homogeneous Boundary Value Problems and Applications. Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1972; Volume 1. [Google Scholar]
- Hale, J.K. Ordinary Differential Equations, 2nd ed.; Robert E. Krieger Publishing: Malabar, FL, USA, 1980. [Google Scholar]
- Lusternik, L.A.; Sobolev, V.J. Elements of Functional Analysis; Hindustan Publ.: Delhi, India; John Wiley & Sons: New York, NY, USA, 1975. [Google Scholar]
- Runst, T.; Sickel, W. Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations; De Gruyter: Berlin, Germany, 1996. [Google Scholar]
- Amrouche, C.; Ciarlet, P.G.; Mardare, C. On a Lemma of Jacques-Louis Lions and its relation to other fundamental results. J. Math. Pures Appl. 2015, 104, 207–226. [Google Scholar] [CrossRef]
- Bogovskiĭ, M.E. Solution of the first boundary value problem for an equation of continuity of an incompressible medium. Dokl. Akad. Nauk SSSR 1979, 248, 1037–1040. [Google Scholar]
- Simon, J. Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. 1987, 146, 65–96. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhailov, S.E. Spatially-Periodic Solutions for Evolution Anisotropic Variable-Coefficient Navier–Stokes Equations: I. Weak Solution Existence. Mathematics 2024, 12, 1817. https://doi.org/10.3390/math12121817
Mikhailov SE. Spatially-Periodic Solutions for Evolution Anisotropic Variable-Coefficient Navier–Stokes Equations: I. Weak Solution Existence. Mathematics. 2024; 12(12):1817. https://doi.org/10.3390/math12121817
Chicago/Turabian StyleMikhailov, Sergey E. 2024. "Spatially-Periodic Solutions for Evolution Anisotropic Variable-Coefficient Navier–Stokes Equations: I. Weak Solution Existence" Mathematics 12, no. 12: 1817. https://doi.org/10.3390/math12121817
APA StyleMikhailov, S. E. (2024). Spatially-Periodic Solutions for Evolution Anisotropic Variable-Coefficient Navier–Stokes Equations: I. Weak Solution Existence. Mathematics, 12(12), 1817. https://doi.org/10.3390/math12121817