Perfect Codes over Non-Prime Power Alphabets: An Approach Based on Diophantine Equations
Abstract
1. Introduction
1.1. Background
1.2. The Main Results
- and ;
- and all prime divisors of q are contained in the set .
2. The Hamming Bound and Ramanujan–Nagell Type Equations
3. Resolving the Diophantine Equations
4. Dealing with the Outstanding Solutions: Lloyd’s Theorem
5. Limitations and Future Lines of Work
5.1. Limitations of Our Methodology
5.2. Future Lines of Work
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Ring of integers | |
| Field of rational numbers | 
References
- Chen, C.L.; Hsiao, M.Y. Error-Correcting Codes for Semiconductor Memory Applications: A State-of-the-Art Review. IBM J. Res. Dev. 1984, 28, 124–134. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Hill, R. A First Course in Coding Theory, 2nd ed.; Oxford Applied Mathematics and Computing Science Series; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
- Heden, O. On perfect codes over non prime power alphabets. Contemp. Math. 2010, 523, 173–184. [Google Scholar]
- Tietäväinen, A. On the nonexistence of perfect codes over finite fields. SIAM J. Appl. Math. 1973, 24, 88–96. [Google Scholar] [CrossRef]
- Leontiev, V.K.; Zinoviev, V.A. Nonexistence of perfect codes over Galois fields. Probl. Control Inform. Theory 1973, 2, 123–132. [Google Scholar]
- Reuvers, H.F.H. Some Nonexistence Theorems for Perfect Codes over Arbitrary Alphabets. Ph.D. Thesis, Eindhoven Technological University, Eindhoven, The Netherlands, 1977. [Google Scholar]
- Best, M. Perfect codes hardly exist. IEEE Trans. Inf. Theory 1983, 29, 349–351. [Google Scholar] [CrossRef]
- Hong, Y. On the nonexistence of unknown perfect 6- and 8- codes in Hamming schemes H(n,q) with q arbitrary. Osaka J. Math. 1984, 21, 687–700. [Google Scholar]
- van Lint, J.H. Recent results on perfect codes and related topics. In Combinatorics; Hall, M., Jr., van Lint, J.H., Eds.; Mathematical Center Tracts 55; Kluwer Academic Publishers: Breukelen, The Netherlands, 1974; pp. 158–178. [Google Scholar]
- Bassalygo, L.A.; Zinov’ev, V.A.; Leont’ev, V.K.; Fel’dman, N.I.I. Nonexistence of perfect codes over some composite alphabets. Probl. Peredachi Inf. 1975, XI, 3–13. (In Russian) [Google Scholar]
- Li, Z.; Xing, L. Classification of q-Ary Perfect Quantum Codes. IEEE Trans. Inf. Theory 2013, 59, 631–634. [Google Scholar] [CrossRef]
- Gubitosi, V.; Portela, A.; Qureshi, C. On the non-existence of perfect codes in the Niederreiter-Rosenbloom-Tsfasman metric. arXiv 2023, arXiv:2302.11738. [Google Scholar]
- Mordell, L. The Diophantine equation x2 + 7 = 2n. Nor. Mat. Tidsskr. 1948, 30, 62–64. [Google Scholar] [CrossRef]
- Le, M.; Soydan, G. A brief survey on the generalized Lebesgue–Ramanujan–Nagell equation. Surv. Math. Its Appl. 2020, 15, 473–523. [Google Scholar]
- von Känel, R.; Matschke, B. Solving S-unit, Mordell, Thue, Thue–Mahler and generalized Ramanujan–Nagell equations via Shimura–Taniyama conjecture. Mem. Am. Math. Soc. 2016, 286, 1419. [Google Scholar] [CrossRef]
- Bosma, W.; Cannon, J.; Playoust, C. The Magma algebra system. I. The user language. J. Symb. Comput. 1997, 24, 235–265. [Google Scholar] [CrossRef]
- Siegel, C.L. Einige Anwendungen diophantischer Approximationen. Abh. Preuss. Akad. Wiss. Phys. Math. Kl. 1929, 1, 41–69. [Google Scholar]
- Cremona, J. Algorithms for Modular Elliptic Curves; Cambridge University Press: Cambridge, UK, 1997; Available online: https://homepages.warwick.ac.uk/staff/J.E.Cremona/book/fulltext/index.html (accessed on 29 April 2024).
- Stroeker, R.J.; Tzanakis, N. Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. Acta Arith. 1994, 67, 177–196. [Google Scholar] [CrossRef]
- Kolyvagin, V. Finiteness of E() and X(E,Q) for a class of Weil curves. Math. USSR Izv. 1989, 32, 523–541. [Google Scholar] [CrossRef]
- Gross, B.H.; Zagier, D.B. Heegner points and derivatives of L-series. Invent. Math. 1986, 84, 225–320. [Google Scholar] [CrossRef]
- Bennett, M.A.; Ghadermarzi, A. Mordell’s equation: A classical approach. LMS J. Comput. Math. 2015, 18, 633–646. [Google Scholar] [CrossRef]
- Lloyd, S.P. Block coding. Bell Syst. Tech. J. 1957, 36, 517–535. [Google Scholar] [CrossRef]
- Bassalygo, L.A. Generalization of Lloyd’s theorem to arbitrary alphabet. Probl. Upr. Teor. Inf. 1973, 2, 133–137. The English translation is available in Probl. Control. Inf. Theory 1973, 2, 25–28. (In Russian) [Google Scholar]
- Delsarte, P. An Algebraic Approach to the Association Schemes of Coding Theory. Philips Research Rep. Suppl. 1973, 10, 97. [Google Scholar]
- Lenstra, H.W. Two theorems on perfect codes. Discret. Math. 1972, 3, 125–132. [Google Scholar] [CrossRef]
- Mignotte, M.; Voutier, P. A kit for linear forms in three logarithms. Math. Comput. 2024, 93, 1903–1951. [Google Scholar] [CrossRef]
- Mutlu, E.K.; Le, M.; Soydan, G. A modular approach to the generalized Ramanujan–Nagell equation. Indag. Math. 2022, 33, 992–1000. [Google Scholar] [CrossRef]
| Reference | q | e | Main Results | 
|---|---|---|---|
| Tietäväinen [5] and Leontiev and Zinoniev [6] (independently) | Prime power | ≥1 | All perfect codes over prime power alphabets are either Hamming codes or have parameters . | 
| Reuvers [7] | Non- prime power | 3, 4, 5 | There are no perfect e-error correcting codes over a q-ary alphabet. | 
| Best [8] | 7, ≥9 | ||
| Hong [9] | 6, 8 | ||
| Reuvers [7] | 6, 15, 21, 22, 26, 30, 35 | 2 | There are no perfect e-error correcting codes over a q-ary alphabet. | 
| van Lint [10] | 10 | ||
| Bassalygo et al. [11] | 
| q | n | M | 
|---|---|---|
| 15 | 11 | |
| 21 | 52 | |
| 46 | 93 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cazorla García, P.-J. Perfect Codes over Non-Prime Power Alphabets: An Approach Based on Diophantine Equations. Mathematics 2024, 12, 1642. https://doi.org/10.3390/math12111642
Cazorla García P-J. Perfect Codes over Non-Prime Power Alphabets: An Approach Based on Diophantine Equations. Mathematics. 2024; 12(11):1642. https://doi.org/10.3390/math12111642
Chicago/Turabian StyleCazorla García, Pedro-José. 2024. "Perfect Codes over Non-Prime Power Alphabets: An Approach Based on Diophantine Equations" Mathematics 12, no. 11: 1642. https://doi.org/10.3390/math12111642
APA StyleCazorla García, P.-J. (2024). Perfect Codes over Non-Prime Power Alphabets: An Approach Based on Diophantine Equations. Mathematics, 12(11), 1642. https://doi.org/10.3390/math12111642
 
        


 
       