Use of the Adaptive Cross Approximation for the Efficient Computation of the Reduced Matrix with the Characteristic Basis Function Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. CBF Generation and Block Size Considerations
2.2. Generation of the Reduced Matrix Using ACA and Solution via MLFMM-CBFM
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harrington, R.F. Field Computation by Moment Methods; McMillan: New York, NY, USA, 1993. [Google Scholar]
- Engheta, N.; Murphy, W.D.; Rokhlin, V.; Vassiliou, M.S. The fast multipole method (FMM) for electro-magnetic scattering problems. IEEE Trans. Antennas Propag. 1992, 40, 634–641. [Google Scholar] [CrossRef]
- Chew, W.C.; Jin, J.; Michielssen, E.; Song, J. (Eds.) Fast and Efficient Algorithms in Computational Electromagnetics; Artech House: Norwood, MA, USA, 2001. [Google Scholar]
- Song, J.M.; Chew, W.C. Multilevel fast multipole algorithm for solving combined field integral equa-tions of electromagnetic scattering. Microw. Opt. Technol. Lett. 1995, 10, 14–19. [Google Scholar] [CrossRef]
- Eibert, T. A diagonalized multilevel fast multipole method with spherical harmonics expansion of the k-space Integrals. IEEE Trans. Antennas Propag. 2005, 53, 814–817. [Google Scholar] [CrossRef]
- Taboada, J.M.; Araujo, M.G.; Basteiro, F.O.; Rodriguez, J.L.; Landesa, L. MLFMA-FFT Parallel Algo-rithm for the Solution of Extremely Large Problems in Electromagnetics. Proc. IEEE 2013, 101, 350–363. [Google Scholar] [CrossRef]
- Suter, E.; Mosig, J.R. A subdomain multilevel approach for the efficient MoM analysis of large planar antennas. Microw. Opt. Technol. Lett. 2000, 26, 270–277. [Google Scholar] [CrossRef]
- Prakash, V.V.S.; Mittra, R. Characteristic basis function method: A new technique for efficient solution of method of moments matrix equations. Microw. Opt. Technol. Lett. 2003, 36, 95–100. [Google Scholar] [CrossRef]
- Matekovits, L.; Laza, V.A.; Vecchi, G. Analysis of Large Complex Structures with the Synthetic-Functions Approach. IEEE Trans. Antennas Propag. 2007, 55, 2509–2521. [Google Scholar] [CrossRef]
- García, E.; Delgado, C.; Cátedra, F. Flexible Approach for the Generation of Macro-Basis Functions Using the Characteristic Basis Function Method. Electronics 2024, 13, 657. [Google Scholar] [CrossRef]
- Delgado, C.; Catedra, M.F. Efficient Generation of Macro Basis Functions for Radiation Problems Using Ray-Tracing Derived Dynamic Thresholds. IEEE Trans. Antennas Propag. 2018, 66, 3231–3236. [Google Scholar] [CrossRef]
- Delgado, C.; Cátedra, M.F. Combination of Ray-Tracing and the Method of Moments for Electromagnetic Radiation Analysis Using Reduced Meshes. J. Comput. Phys. 2018, 361, 412–423. [Google Scholar] [CrossRef]
- Gonzalez-Ovejero, D.; Craeye, C. Interpolatory macro basis functions analysis of non-periodic arrays. IEEE Trans. Antennas Propag. 2011, 59, 3117–3122. [Google Scholar] [CrossRef]
- García, E.; Delgado, C.; Cátedra, F. Efficient Iterative Analysis Technique of Complex Radome Antennas Based on the Characteristic Basis Function Method. IEEE Trans. Antennas Propag. 2021, 69, 5881–5891. [Google Scholar] [CrossRef]
- Wang, Z.G.; Nie, W.Y.; Lin, H. Characteristic basis functions enhanced compressive sensing for solving the bistatic scattering problems of three-dimensional targets. Microw. Opt. Technol. Lett. 2020, 62, 3132–3138. [Google Scholar] [CrossRef]
- Marinović, T.; Maaskant, R.; Mittra, R.; Vandenbosch, G.A.E. Comparison of CBFM-Enhanced Iterative Methods for MoM-Based Finite Antenna Array Analysis. IEEE Trans. Antennas Propag. 2022, 70, 3538–3548. [Google Scholar] [CrossRef]
- García, E.; Delgado, C.; Cátedra, F. A Computationally Efficient Technique Using Characteristic Basis Functions and Large Block Sizes. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 1341–1345. [Google Scholar] [CrossRef]
- Tanaka, T.; Niino, K.; Nishimura, N. Characteristic Basis Function Method Combined with Krylov-Calderón Preconditioner for PMCHWT Formulation. IEEE Trans. Antennas Propag. 2024, 72, 2578–2591. [Google Scholar] [CrossRef]
- Li, C.; Sharawi, M.S.; Mittra, R. Fast Computation of Electromagnetic Scattering from Dielectric Objects Using Quadrilateral Piecewise Sinusoidal Basis and Characteristic Basis Function Method. IEEE Trans. Antennas Propag. 2022, 70, 5683–5692. [Google Scholar] [CrossRef]
- Lü, Z.-Q.; An, X. Fast monostatic radar cross-section computation for perfectly electric conducting targets using low-rank compression and adaptive integral method. IET Microw. Antennas Propag. 2014, 8, 46–51. [Google Scholar] [CrossRef]
- Li, M.; Ding, D.; Heldring, A.; Hu, J.; Chen, R.; Vecchi, G. Low-Rank Matrix Factorization Method for Multiscale Simulations: A Review. IEEE Open J. Antennas Propag. 2021, 2, 286–301. [Google Scholar] [CrossRef]
- Burkholder, R.J.; Lee, J.F. Fast Dual-MGS Block-Factorization Algorithm for Dense MoM Matrices. IEEE Trans. Antennas Propag. 2004, 52, 1693–1699. [Google Scholar] [CrossRef]
- Zhao, K.; Vouvakis, N.M.; Lee, J.-F. The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems. IEEE Trans. Electromagn. Compat. 2005, 47, 763–773. [Google Scholar] [CrossRef]
- Heldring, A.; Ubeda, E.; Rius, J.M. Stochastic Estimation of the Frobenius Norm in the ACA Conver-gence Criterion. IEEE Trans. Antennas Propag. 2015, 63, 1155–1158. [Google Scholar] [CrossRef]
- Huang, F.; Sun, Y.F. Efficient solution of electromagnetic scattering from dielectric objects via characteristic basis function method based on large-size blocks with multilevel subdivision. IEEE Access 2019, 7, 71741–71748. [Google Scholar] [CrossRef]
- Fang, X.X.; Cao, Q.S.; Wang, Y. Accelerated direct solver with multiscale compressed block decomposition and multilevel characteristic basis function method. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2226–2229. [Google Scholar] [CrossRef]
- Blackburn, J.N.; Young, J.C.; Adams, R.J. A Weighted Average Adaptive Cross Approximation. IEEE Trans. Antennas Propag. 2023, 71, 8121–8129. [Google Scholar] [CrossRef]
- Wang, Y.; Jiao, D. Fast O(N log N) Algorithm for Generating Rank-Minimized H2-Representation of Electrically Large Volume Integral Equations. IEEE Trans. Antennas Propag. 2022, 70, 6944–6956. [Google Scholar] [CrossRef]
- Jia, R.; Zuo, S.; Zhao, X.; Lin, Z.; Zhang, Y.; Yang, M. A Novel Parallel Direct Solver Using Adaptive Cross Approximation for Analysis of Electromagnetic Radiation Problems with Complex Structures. IEEE Trans. Antennas Propag. 2024, 72, 2962–2967. [Google Scholar] [CrossRef]
- Wang, D.; Hu, Y.; Fang, Y.; Mao, Y.; Liu, Q.H. Fast VIE-DDM for 3-D Electromagnetic Scattering of Complicated Anomalies in Layered Media Using Adaptive Cross Approximation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4507709. [Google Scholar] [CrossRef]
- García, E.; Lozano, L.; Delgado, C.; Cátedra, F. Efficient computation of the reduced matrix of MLFMA–CBFM for electrically large blocks. IET Microwaves Antennas Propag. 2020, 14, 539–546. [Google Scholar] [CrossRef]
- Heldring, A.; Rius, J.M.; Tamayo, J.M.; Parrón, J.; Ubeda, E. Multiscale Compressed Block Decomposition for Fast Direct Solution of Method of Moments Linear System. IEEE Trans. Antennas Propag. 2011, 59, 526–536. [Google Scholar] [CrossRef]
MLFMM-CBFM Conventional | MLFMM-CBFM Proposed Technique | |
---|---|---|
Reduced Matrix CPU-time | 5998 s | 3983 s |
Total CPU-Time | 22,320 s | 20,296 s |
Memory Requirements | 9.05 GB | 5.73 GB |
MLFMM-CBFM (Rigorous) | MLFMM-CBFM (MLFMM) | MLFMM-CBFM (ACA) | |
---|---|---|---|
Reduced Matrix CPU-time | 1898 s | 1023 s | 798 s |
Total CPU-Time | 3285 s | 2485 s | 2127 s |
Memory Requirements | 2.07 GB | 1.48 GB | 1.28 GB |
MLFMM-CBFM (Rigorous) | MLFMM-CBFM (MLFMM) | MLFMM-CBFM (ACA) | |
---|---|---|---|
Reduced Matrix CPU-time | 3742 s | 1823 s | 1242 s |
Total CPU-Time | 4231 s | 2301 s | 1839 s |
Memory Requirements | 8.12 GB | 3.02 GB | 2.67 GB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, E.; Delgado, C.; Cátedra, F. Use of the Adaptive Cross Approximation for the Efficient Computation of the Reduced Matrix with the Characteristic Basis Function Method. Mathematics 2024, 12, 1565. https://doi.org/10.3390/math12101565
García E, Delgado C, Cátedra F. Use of the Adaptive Cross Approximation for the Efficient Computation of the Reduced Matrix with the Characteristic Basis Function Method. Mathematics. 2024; 12(10):1565. https://doi.org/10.3390/math12101565
Chicago/Turabian StyleGarcía, Eliseo, Carlos Delgado, and Felipe Cátedra. 2024. "Use of the Adaptive Cross Approximation for the Efficient Computation of the Reduced Matrix with the Characteristic Basis Function Method" Mathematics 12, no. 10: 1565. https://doi.org/10.3390/math12101565
APA StyleGarcía, E., Delgado, C., & Cátedra, F. (2024). Use of the Adaptive Cross Approximation for the Efficient Computation of the Reduced Matrix with the Characteristic Basis Function Method. Mathematics, 12(10), 1565. https://doi.org/10.3390/math12101565