A Blow-Up Criterion for the Density-Dependent Incompressible Magnetohydrodynamic System with Zero Viscosity
Abstract
:1. Introduction
2. Proof of Theorem 1
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beirão da Veiga, H.; Valli, A. On the Euler equations for the nonhomogeneous fluids II. J. Math. Anal. Appl. 1980, 73, 338–350. [Google Scholar] [CrossRef]
- Beirão da Veiga, H.; Valli, A. Existence of C∞ solutions of the Euler equations for nonhomogeneous fluids. Commun. Partial Differ. Equ. 1980, 5, 95–107. [Google Scholar] [CrossRef]
- Valli, A.; Zajaczkowski, W.M. About the motion of nonhomogeneous ideal incompressible fluids. Nonlinear Anal. TMA 1988, 12, 43–50. [Google Scholar] [CrossRef]
- Berselli, L. On the Global Existence of Solution to the Equation of Ideal Fluids. Master’s Thesis, 1995. Unpublished (In Italian). [Google Scholar]
- Danchin, R. On the well-posedness of the incompressible density-dependent Euler equations in the Lp framework. J. Differ. Equ. 2010, 248, 2130–2170. [Google Scholar] [CrossRef]
- Danchin, R.; Fanelli, F. The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces. J. Math. Pures Appl. 2011, 96, 253–278. [Google Scholar] [CrossRef]
- Chae, D.; Lee, J. Local existence and blow-up criterion of the inhomogeneous Euler equations. J. Math. Fluid Mech. 2003, 5, 144–165. [Google Scholar] [CrossRef]
- Zhou, Y.; Xin, Z.P.; Fan, J. Well-posedness for the density-dependent incompressible Euler equations in the critical Besov spaces. Sci. China Math. 2010, 40, 950–970. (In Chinese) [Google Scholar]
- Bae, H.; Lee, W.; Shin, J. A blow-up criterion for the inhomogeneous incompressible Euler equations. Nonlinear Anal. 2020, 196, 111774. [Google Scholar] [CrossRef]
- He, F.; Fan, J.; Zhou, Y. Local existence and blow-up criterion of the ideal density-dependent flows. Bound. Value Probl. 2016, 2016, 101. [Google Scholar] [CrossRef]
- Kato, T.; Ponce, G. Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 1988, 41, 891–907. [Google Scholar] [CrossRef]
- Caflisch, R.E.; Klapper, I.; Steele, G. Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Commun. Math. Phys. 1997, 184, 443–455. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, K.; Fan, J.; Nakamura, G. A Blow-Up Criterion for the Density-Dependent Incompressible Magnetohydrodynamic System with Zero Viscosity. Mathematics 2024, 12, 1510. https://doi.org/10.3390/math12101510
Shi K, Fan J, Nakamura G. A Blow-Up Criterion for the Density-Dependent Incompressible Magnetohydrodynamic System with Zero Viscosity. Mathematics. 2024; 12(10):1510. https://doi.org/10.3390/math12101510
Chicago/Turabian StyleShi, Kunlong, Jishan Fan, and Gen Nakamura. 2024. "A Blow-Up Criterion for the Density-Dependent Incompressible Magnetohydrodynamic System with Zero Viscosity" Mathematics 12, no. 10: 1510. https://doi.org/10.3390/math12101510
APA StyleShi, K., Fan, J., & Nakamura, G. (2024). A Blow-Up Criterion for the Density-Dependent Incompressible Magnetohydrodynamic System with Zero Viscosity. Mathematics, 12(10), 1510. https://doi.org/10.3390/math12101510