Bohr’s Phenomenon for the Solution of Second-Order Differential Equations
Abstract
:1. Introduction
1.1. Basic Requirements from Geometric Functions Theory
1.2. On Bohr’s Phenomena of Analytic Functions
- 1.
- for , when .
- 2.
- for , when .
1.3. On Subordination by and
- (i)
- for ;
- (ii)
- for
- (iii)
- for
1.4. Problems and Arrangement of This Article
2. Main Results
2.1. Bohr’s Operator on Functions Associated with the Leminiscate and Nephroid Domain
- (a)
- ;
- (b)
- for ;
- (c)
- for .
- (i)
- for ;
- (ii)
- for
- (iii)
- for .
2.2. Bohr’s Operator on the Solution of Differential Equations
- (i)
- for ;
- (ii)
- for ;
- (iii)
- for .
- (i)
- for ;
- (ii)
- for ;
- (iii)
- for .
3. Examples Involving Special Functions
3.1. Example Involving the Associated Laguerre Polynomial
- (a)
- , whereSince, , it follows thatFinally, from the definition of in (2), it follows that
- (b)
- DefineNow,Further simplification leads to
- (i)
- for . In this case,A similar calculation to the one above yieldsThus,
- (ii)
- for . In this case,
3.2. Example Involving the Error Function
- (i)
- for ;
- (ii)
- for
- (iii)
- for .
3.3. Example Involving the Classical Bessel Function
- (i)
- for ;
- (ii)
- for
- (iii)
- for .
3.4. Example Involving Airy Functions
- (i)
- for ;
- (ii)
- for
- (iii)
- for ,
3.5. Example Involving Generalized Bessel Functions
- (i)
- for ;
- (ii)
- for
- (iii)
- for ,
3.6. Example Involving Confluent Hypergeometric Functions
- (i)
- for ;
- (ii)
- for
- (iii)
- for ,
3.7. Example Involving Some General Functions
- (a)
- , with . Since and , we can say that is defined only for . Hence,
- (b)
- for , and . Now,
4. Conclusions
- Associated Laguerre polynomials (Section 3.1);
- Error functions (Section 3.2);
- Classical Bessel functions (Section 3.3);
- Airy functions (Section 3.4);
- Generalized Bessel functions (Section 3.5);
- Confluent hypergeometric functions (Section 3.6).
Funding
Data Availability Statement
Conflicts of Interest
References
- Duren, P.L. Univalent functions. In Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]; Springer: New York, NY, USA, 1983; Volume 259, pp. xiv+382. [Google Scholar]
- Bohr, H. A Theorem Concerning Power Series. Proc. Lond. Math. Soc. 1914, 13, 1–5. [Google Scholar] [CrossRef]
- Sidon, S. Über einen Satz von Herrn Bohr. Math. Z. 1927, 26, 731–732. [Google Scholar] [CrossRef]
- Tomić, M. Sur un théorème de H. Bohr. Math. Scand. 1962, 11, 103–106. [Google Scholar] [CrossRef]
- Paulsen, V.I.; Popescu, G.; Singh, D. On Bohr’s inequality. Proc. Lond. Math. Soc. 2002, 85, 493–512. [Google Scholar] [CrossRef]
- Rogosinski, W. Über Bildschranken bei Potenzreihen und ihren Abschnitten. Math. Z. 1923, 17, 260–276. [Google Scholar] [CrossRef]
- Bhowmik, B.; Das, N. Bohr phenomenon for subordinating families of certain univalent functions. J. Math. Anal. Appl. 2018, 462, 1087–1098. [Google Scholar] [CrossRef]
- Abu Muhanna, Y.; Ali, R.M. Bohr’s phenomenon for analytic functions into the exterior of a compact convex body. J. Math. Anal. Appl. 2011, 379, 512–517. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, M.S.; Ponnusamy, S. The Bohr-type operator on analytic functions and sections. Complex Var. Elliptic Equ. 2023, 68, 317–332. [Google Scholar] [CrossRef]
- Madaan, V.; Kumar, A.; Ravichandran, V. Starlikeness associated with lemniscate of Bernoulli. Filomat 2019, 33, 1937–1955. [Google Scholar] [CrossRef]
- Swaminathan, A.; Wani, L.A. Sufficiency for nephroid starlikeness using hypergeometric functions. Math. Methods Appl. Sci. 2022, 45, 5388–5401. [Google Scholar] [CrossRef]
- Mondal, S.R. On Lemniscate Starlikeness of the Solution of General Differential Equations. Mathematics 2022, 10, 3254. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; US Government Printing Office: Washington, DC, USA, 1968; Volume 55.
- Szegö, G. Orthogonal Polynomials; American Mathematical Society Colloquium Publications, American Mathematical Society: New York, NY, USA, 1939; Volume 23, pp. ix+401. [Google Scholar]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions. In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1999; Volume 71, pp. xvi+664. [Google Scholar] [CrossRef]
- Alzer, H. Error function inequalities. Adv. Comput. Math. 2010, 33, 349–379. [Google Scholar] [CrossRef]
- Coman, D. The radius of starlikeness for the error function. Stud. Univ. Babeş-Bolyai Math. 1991, 36, 13–16. [Google Scholar]
- Baricz, A. Geometric properties of generalized Bessel functions. Publ. Math. Debr. 2008, 73, 155–178. [Google Scholar] [CrossRef]
- Brown, R.K. Univalence of Bessel functions. Proc. Am. Math. Soc. 1960, 11, 278–283. [Google Scholar] [CrossRef]
- Ali, R.M.; Lee, S.K.; Mondal, S.R. Geometric features of general differential solutions. Bull. Belg. Math. Soc. Simon Stevin 2019, 26, 551–570. [Google Scholar] [CrossRef]
- Madaan, V.; Kumar, A.; Ravichandran, V. Lemniscate convexity of generalized Bessel functions. Stud. Sci. Math. Hungar. 2019, 56, 404–419. [Google Scholar] [CrossRef]
- Baricz, A.; Szász, R. The radius of convexity of normalized Bessel functions of the first kind. Anal. Appl. 2014, 12, 485–509. [Google Scholar] [CrossRef]
- Baricz, A. Geometric properties of generalized Bessel functions of complex order. Mathematica 2006, 48, 13–18. [Google Scholar]
- Ponnusamy, S.; Vuorinen, M. Univalence and convexity properties for confluent hypergeometric functions. Complex Var. Theory Appl. 1998, 36, 73–97. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Vuorinen, M. Univalence and convexity properties for Gaussian hypergeometric functions. Rocky Mt. J. Math. 2001, 31, 327–353. [Google Scholar] [CrossRef]
- Ruscheweyh, S.; Singh, V. On the order of starlikeness of hypergeometric functions. J. Math. Anal. Appl. 1986, 113, 1–11. [Google Scholar] [CrossRef]
- Ali, R.M.; Mondal, S.R.; Ravichandran, V. On the Janowski convexity and starlikeness of the confluent hypergeometric function. Bull. Belg. Math. Soc. Simon Stevin 2015, 22, 227–250. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Univalence of Gaussian and confluent hypergeometric functions. Proc. Am. Math. Soc. 1990, 110, 333–342. [Google Scholar] [CrossRef]
- Naz, A.; Nagpal, S.; Ravichandran, V. Exponential starlikeness and convexity of confluent hypergeometric, Lommel, and Struve functions. Mediterr. J. Math. 2020, 17, 204. [Google Scholar] [CrossRef]
- Kanas, S.a.; Stankiewicz, J. Univalence of confluent hypergeometric functions. Ann. Univ. Mariae Curie-Sklodowska 1998, 52, 51–56. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondal, S.R. Bohr’s Phenomenon for the Solution of Second-Order Differential Equations. Mathematics 2024, 12, 39. https://doi.org/10.3390/math12010039
Mondal SR. Bohr’s Phenomenon for the Solution of Second-Order Differential Equations. Mathematics. 2024; 12(1):39. https://doi.org/10.3390/math12010039
Chicago/Turabian StyleMondal, Saiful R. 2024. "Bohr’s Phenomenon for the Solution of Second-Order Differential Equations" Mathematics 12, no. 1: 39. https://doi.org/10.3390/math12010039