Markov Triples with Generalized Pell Numbers
Abstract
:1. Introduction
- (a)
- for all .
- (b)
- for all .
- (c)
- for all and all .
2. Preliminary Results
- (a)
- for all .
- (b)
- satisfies the following “Binet-like” formula
- (c)
- and for .
- (d)
- holds for all .
3. Proof of Theorem 1
k | 3 | 4 | 5 | 6 | 7 | 8 |
0.082… | 0.149… | 0.180… | 0.194… | 0.201… | 0.203… |
3.1. Case
3.2. Case
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sloane, N.J.A. The Online Encyclopedia of Integer Sequences. Available online: http://oeis.org (accessed on 10 December 2023).
- Aigner, M. Markov’s Theorem and 100 Years of the Uniqueness Conjecture, 1st ed.; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Luca, F.; Srinivasan, A. Markov equation with Fibonacci components. Fibonacci Q. 2018, 56, 126–169. [Google Scholar]
- Kafle, B.; Srinivasan, A.; Togbé, A. Markoff equation with Pell Components. Fibonacci Q. 2020, 58, 226–230. [Google Scholar]
- Gómez, C.A.; Gómez, J.C.; Luca, F. Markov triples with k-generalized Fibonacci components. Ann. Math. Inform. 2020, 52, 107–115. [Google Scholar] [CrossRef]
- Kiliç, E. On the usual Fibonacci and generalized order-k Pell numbers. Ars Comb. 2013, 109, 391–403. [Google Scholar]
- Bravo, J.J.; Herrera, J.L.; Luca, F. On a generalization of the Pell sequence. Math. Bohem. 2021, 146, 199–213. [Google Scholar] [CrossRef]
- Long, C.T.; Jordan, J.H. A limited arithmetic on simple continued fractions. Fibonacci Q. 1967, 2, 113–128. [Google Scholar]
- Bravo, J.J.; Herrera, J.L. Fibonacci numbers in generalized Pell sequences. Math. Slovaca 2020, 70, 1057–1068. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz, J.F.; Herrera, J.L.; Bravo, J.J. Markov Triples with Generalized Pell Numbers. Mathematics 2024, 12, 108. https://doi.org/10.3390/math12010108
Ruiz JF, Herrera JL, Bravo JJ. Markov Triples with Generalized Pell Numbers. Mathematics. 2024; 12(1):108. https://doi.org/10.3390/math12010108
Chicago/Turabian StyleRuiz, Julieth F., Jose L. Herrera, and Jhon J. Bravo. 2024. "Markov Triples with Generalized Pell Numbers" Mathematics 12, no. 1: 108. https://doi.org/10.3390/math12010108
APA StyleRuiz, J. F., Herrera, J. L., & Bravo, J. J. (2024). Markov Triples with Generalized Pell Numbers. Mathematics, 12(1), 108. https://doi.org/10.3390/math12010108