Next Article in Journal
On the Bias of the Unbiased Expectation Theory
Previous Article in Journal
GSA-KELM-KF: A Hybrid Model for Short-Term Traffic Flow Forecasting
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Delta Calculus on Time Scale Formulas That Are Similar to Hilbert-Type Inequalities

1
Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
2
Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5450, Corrientes 3400, Argentina
3
Department of Mathematics, College of Arts and Sciences, King Khalid University, P.O. Box 64512, Abha 62529, Sarat Ubaidah, Saudi Arabia
4
Department of Mathematics, Faculty of Science, Benha University, Benha 13511, Egypt
5
Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
*
Author to whom correspondence should be addressed.
Mathematics 2024, 12(1), 104; https://doi.org/10.3390/math12010104
Submission received: 15 October 2023 / Revised: 24 November 2023 / Accepted: 4 December 2023 / Published: 28 December 2023
(This article belongs to the Section Computational and Applied Mathematics)

Abstract

:
In this article, we establish some new generalized inequalities of the Hilbert-type on time scales’ delta calculus, which can be considered similar to formulas for inequalities of Hilbert type. The major innovation point is to establish some dynamic inequalities of the Hilbert-type on time scales’ delta calculus for delta differentiable functions of one variable and two variables. In this paper, we use the condition  a j ( s j ) = 0  and  a j ( s j , z j ) = a j ( w j , n j ) = 0 j = 1 , 2 , , n . These inequalities will be proved by applying Hölder’s inequality, the chain rule on time scales, and the mean inequality. As special cases of our results (when  T = N  and  T = R ), we obtain the discrete and continuous inequalities. Also, we can obtain other inequalities in different time scales, like  T = q Z q > 1 .

1. Introduction

During the early 1900s, Hilbert made the discovery of this inequality (refer to [1])
n = 1 s = 1 a s c n s + n π s = 1 a s 2 1 2 n = 1 c n 2 1 2 .
Here,  { a s } s = 1  and  { c n } n = 1  are real sequences satisfying  0 < s = 1 a s 2 <  and  0 < n = 1 c n 2 < . This particular expression is known as Hilbert’s double series inequality.
In [2], Schur demonstrated that  π  in (1) is the most optimal constant achievable. Additionally, he unveiled the integral counterpart of (1), which later became recognized as the Hilbert integral inequality, taking the form
0 0 f ( η ) g ( τ ) η + τ d η d τ π 0 f 2 ( η ) d η 1 2 0 g 2 ( τ ) d τ 1 2 ,
where  f , g  are measurable functions satisfying  0 < 0 f 2 ( η ) d η <  and  0 < 0 g 2 ( τ ) d τ < .
In [3], an extension of (1) is presented as follows: suppose  l , r > 1  with  1 / l + 1 / r = 1 { a s } s = 1 { c n } n = 1  are real sequences satisfying  0 < s = 1 a s r <  and  0 < n = 1 c n l < , then
n = 1 s = 1 a s c n s + n π sin π r s = 1 a s r 1 r n = 1 c n l 1 l .
Here,  π / sin ( π / r )  is the optimal constant.
In [4], the authors derived the integral counterpart of (3) as
0 0 f ( η ) g ( τ ) η + τ d η d τ π sin π r 0 f r ( η ) d η 1 r 0 g l ( τ ) d τ 1 l .
Here,  f , g 0  are measurable functions satisfying  0 < 0 f r ( η ) d η <  and  0 < 0 g l ( τ ) d τ < .
In [5], new inequalities akin to the ones presented in (3) and (4) were established as follows: let  l , r > 1  with  1 / l + 1 / r = 1 . Consider sequences  a w : 0 , 1 , 2 , , s N R  and  c ϑ : 0 , 1 , 2 , , n N R  where  a ( 0 ) = c ( 0 ) = 0 . Then
w = 1 s ϑ = 1 n a w c ϑ l w r 1 + r ϑ l 1 D ( l , r , s , n ) w = 1 s ( s w + 1 ) a w r 1 r × ϑ = 1 n ( n ϑ + 1 ) c ϑ l 1 l .
Here,  a w = a w a w 1 c ϑ = c ϑ c ϑ 1  and
D ( l , r , s , n ) = 1 l r s r 1 r n l 1 l .
Moreover, if  l , r > 1  with  1 / l + 1 / r = 1 f ( w )  and  g ( ϑ )  are real-valued continuous functions with  f ( 0 ) = g ( 0 ) = 0 , then
0 η 0 τ f ( w ) g ( ϑ ) l w r 1 + r ϑ l 1 d w d ϑ M ( l , r , η , τ ) 0 η η w f ( w ) r d w 1 r × 0 τ τ ϑ g ( ϑ ) l d ϑ 1 l .
Here,
M ( l , r , η , τ ) = 1 l r η r 1 r τ l 1 l .
In [6], Chang-Jian et al. proved some new inequalities of Hilbert type in the difference calculus with “n-dimension” and derived their integral analogues. These inequalities are outlined as follows: let  r j > 1  such that  1 / l j + 1 / r j = 1  and  a j ( w j )  are real sequences defined for  w j = 0 , 1 , 2 , , s j , where  s j N  and  a j 0 = 0 ;   j = 1 , 2 , , n . Define the operator ∇ as  a j ( w j ) = a j ( w j ) a j ( w j 1 ) . Then
w 1 = 1 s 1 w 2 = 1 s 2 w n = 1 s n j = 1 n a j ( w j ) j = 1 n w j l j j = 1 n 1 l j K j = 1 n w j = 1 s j s j w j + 1 Δ a j ( w j ) r j 1 r j .
Here,
K = n j = 1 n 1 r j j = 1 n 1 r j n j = 1 n s j 1 l j .
Also, they proved that if  h j 1 l j , r j > 1  are constants with  1 / r j + 1 / l j = 1 f j ( w j )  are real valued differentiable functions defined on  [ 0 , η j ) , where  η j 0 ,  and  f j 0 = 0 ;   j = 1 , 2 , , n , then
0 η 1 0 η n j = 1 n f j h j ( w j ) j = 1 n w j l j j = 1 n 1 l j d w n d w 1 L j = 1 n 0 η j η j w j f j h j 1 ( w j ) . f j ( w j ) r j d w j 1 r j ,
where
L = n j = 1 n 1 r j j = 1 n 1 r j n j = 1 n h j η j 1 l j .
Furthermore, they established that if  l j , r j > 1  such that  1 / r j + 1 / l j = 1 a j ( w j , z j )  are real sequences defined for  w j , z j  where  w j = 0 , 1 , 2 , , s j z j = 0 , 1 , 2 , , n j ; s j , n j N  and  a j ( 0 , z j ) = a j ( w j , 0 ) = 0 j = 1 , 2 , , n . Define the operators  1  and  2  by
1 a j ( w j , z j ) = a j ( w j , z j ) a j ( w j 1 , z j ) ,
2 a j ( w j , z j ) = a j ( w j , z j ) a j ( w j , z j 1 ) .
Then
w 1 = 1 s 1 z 1 = 1 t 1 w n = 1 s n z n = 1 t n j = 1 n a j ( w j , z j ) j = 1 n w j z j / l j j = 1 n 1 l j R j = 1 n w j = 1 s j z j = 1 t j s j w j + 1 t j z j + 1 2 1 a j ( w j , z j ) r j 1 r j .
Here,
R = n j = 1 n 1 r j j = 1 n 1 r j n . j = 1 n s j n j 1 l j .
For more details about Hilbert type inequalities, see the papers [5,6,7,8]. As applications of our work, we refer to the papers [9,10]. In recent decades, a novel theory, known as time scale theory, has emerged, aimed at unifying continuous calculus and discrete calculus. The results presented in this paper encompass classical continuous and discrete inequalities as special cases when  T = R  and  T = N , respectively. Moreover, these inequalities can be extended to analogous inequalities on various time scales, such as  T = q Z  for  q > 1 . Many researchers have delved into dynamic inequalities on time scales, and for a more comprehensive understanding of these dynamic inequalities on time scales, readers are referred to papers [11,12,13,14,15,16,17].
The primary objective of this paper is to establish analogous formulas for Hilbert-type inequalities (7) and (8) within the framework of time scales in delta calculus. It is important to note that these formulas are derived under specific conditions, which are  a j ( s j ) = 0  and  a j ( s j , z j ) = a j ( w j , n j ) = 0 j = 1 , 2 , , n . These conditions differ from those utilized in a previous work [6]. The outcomes of our research provide novel insights and estimations for these specific categories of inequalities. In particular, we have introduced multivariate summation inequalities for extensions of the Hilbert inequality, which were previously unproven. Additionally, we have obtained their corresponding integral expressions. The proofs of these results are based on the application of Hölder’s inequality on time scales and the mean inequality.
The paper is structured as follows: After this introductory section, the subsequent section offers an overview of fundamental concepts in time scale calculus, which serve as the basis for our proofs. The final section is dedicated to presenting our main findings.

2. Basic Principles

In what follows, the time scale  T  is a nonempty closed subset of  R , and it could be an interval, a union of intervals, or even a set of isolated points. The real numbers (continuous case), integers (discrete case), and various amalgamations of the two constitute the most prevalent instances of time scales. Given  ν T , we establish  σ : T T  and  μ : T R  as  σ ( ν ) : = inf { α T : α > ν }  and  μ ( ν ) : = σ ( ν ) ν 0 . These components are referred to as the forward jump operator and the forward graininess function, correspondingly. Considering a function  : T R , we introduce the notation:
σ ( ν ) = ( σ ( ν ) ) ν T .
Additionally, we establish the interval within the context of  T  as:
T : = T R .
Below, we present the concept of the delta derivative along with its properties. We also delve into the chain rule, integration by parts, Fubini’s theorem, and the mean inequality, which are discussed and analyzed in the references [4,18,19,20,21] and others.
Definition 1
([20]). We use the term “Δ differentiable" to describe a function ℑ being differentiable at  v T , if  ε > 0 , there is a neighborhood W of v such that for some β the inequality
| ( σ ( v ) ) ( w ) β ( σ ( v ) w ) | ε | σ ( v ) w | , w W
is true and, in this case, we write  Δ ( v ) = β .
Theorem 1
(Properties of delta-derivatives [20]). Assume ℑ is a function and let  v T k , then
  • If ℑ is differentiable at v, then ℑ is continuous at v.
  • If ℑ is continuous at v and v is right-scattered (i.e.,  σ ( v ) > v ) , then ℑ is differentiable at v with
    Δ ( v ) = ( σ ( v ) ) ( v ) μ ( v ) .
  • If v is right-dense (i.e.,  σ ( v ) = v ) , then ℑ is differentiable if the limit
    lim w v ( v ) ( w ) v w ,
    exists as a finite number. In this case,
    Δ ( v ) = lim w v ( v ) ( w ) v w .
Example 1.
  • If  T = R , then  σ ( v ) = v μ ( v ) = 0  and
    Δ ( v ) = lim w v ( v ) ( w ) v w = ( v ) v T ,
    where   is the usual derivative.
  • If  T = Z , then  σ ( v ) = v + 1 μ ( v ) = 1  and
    Δ ( v ) = ( σ ( ) ) ( v ) μ ( v ) = ( v + 1 ) ( v ) = Δ ( v ) ,
    where Δ is the usual forward difference operator.
  • If  T = q Z : = { v : v = q k k Z q > 1 } { 0 } , then  σ ( v ) = q v μ ( v ) = ( q 1 ) v  and
    Δ ( v ) = Δ q ( v ) = ( q v ) ( v ) ( q 1 ) v v T { 0 } .
Theorem 2
(Chain Rule [20]). Given that  Υ : T R  is a continuous and Δ differentiable and  : R R  is continuously differentiable, then
Υ Δ ( v ) = Υ ( τ ) Υ Δ ( v ) for τ [ v , σ ( v ) ] .
Definition 2
([20]). A function ℑ is characterized as  r d continuous when it exhibits continuity at every right-dense point within  T  and possesses finite left-sided limits at left-dense points in  T . We use the symbol  C r d ( T , R )  to represent the sets of all rd-continuous functions, and the symbol  C ( T , R )  to represent the set of all continuous functions.
The following is a description of the concept of an integral on time scales.
Definition 3
([20]). ℜ is Δ antiderivative of ℑ if
Δ ( v ) = ( v ) holds v T k .
As a result, for  a , c T , we deduce the integral of ℑ as
a c ( v ) Δ v = ( c ) ( a ) .
It is widely acknowledged that any rd-continuous function possesses an antiderivative. As a result, we can deduce the following outcomes.
Theorem 3
([20]). If  v 0 , v T , then
v 0 v ( ϑ ) Δ ϑ Δ = ( v ) .
Theorem 4
([20]). If  a , c , τ T α , β R  and  , Υ C r d ( [ a , c ] T R ) , then
  • a c α ( δ ) + β Υ ( δ ) Δ δ = α a c ( δ ) Δ δ + β a c Υ ( δ ) Δ δ ;
  • a a ( δ ) Δ δ = 0 ;
  • a c ( δ ) Δ δ = a τ ( δ ) Δ δ + τ c ( δ ) Δ δ ;
  • If  ( δ ) 0 ; δ [ a , c ] T , then  a c ( δ ) Δ δ 0 .
  • a c ( δ ) Δ δ a c ( δ ) Δ δ .
Lemma 1
(Integration by parts [19]). If  a , c T  and  ω , κ C r d ( [ a , c ] T R ) , then
a c ω ( δ ) κ Δ ( δ ) Δ δ = ω ( δ ) κ ( δ ) a c a c ω Δ ( δ ) κ σ ( δ ) Δ δ .
Theorem 5
([19]). Let  a , c T  and  C r d ( T , R ) . Then
(i)
If  T = R , then
a c ( δ ) Δ δ = a c ( δ ) d δ .
(ii)
If  T = Z , then
a c ( δ ) Δ δ = δ = a c 1 ( δ ) .
(iii)
If  T = q Z , then
a c ( δ ) Δ δ = ( q 1 ) k = log q a log q c 1 q k ( q k ) .
Lemma 2
(Hölder’s Inequality [19]). If  a , c T  and  , Υ C r d ( [ a , c ] T R + ) , then
a c ( δ ) Υ ( δ ) Δ δ a c ω ( δ ) η ( δ ) Δ δ 1 η a c ω ( δ ) Υ λ ( δ ) Δ δ 1 λ ,
where  η > 1  and  1 / η + 1 / λ = 1 .
Let  T 1 T 2  be time scales,  C C r d  denote the set of functions  τ , ξ  on  T 1 × T 2 , where is  r d continuous in  τ ξ  and  C C r d  denote the set of all functions  C C r d , for which both the  Δ 1  partial derivative with respect to  τ  and  Δ 2  partial derivative with respect to  ξ  exist, and are in  C C r d .
Lemma 3
([18], Theorem 3.3). Let  η , λ T  with  η < λ f , g C C r d ( η , λ T × η , λ T R )  and  γ , ν > 1  such that  1 / γ + 1 / ν = 1 . Then,
η λ η λ | f ( τ , ξ ) g ( τ , ξ ) | Δ 1 τ Δ 2 ξ η λ η λ | f ( τ , ξ ) | γ Δ 1 τ Δ 2 ξ 1 γ η λ η λ | g ( τ , ξ ) | ν Δ 1 τ Δ 2 ξ 1 ν .
Lemma 4
(Fubini’s theorem [21]). If  η , λ , c , d T  and  C C r d η , λ T × c , d T , R  is  Δ integrable, then
η λ c d ( τ , ξ ) Δ 2 ξ Δ 1 τ = c d η λ ( τ , ξ ) Δ 1 τ Δ 2 ξ .
Lemma 5
(Mean inequality [4]). If  α j , β j > 0  for  j = 1 , 2 , , s , then
j = 1 s α j β j j = 1 s α j β j j = 1 s β j j = 1 s β j j = 1 s β j .

3. Main Results

Throughout this paper, we will operate under the assumption that the functions are rd-continuous, and we will also consider the existence of the integrals. To substantiate our results, it is necessary to prove the following lemma.
Lemma 6.
Let  l j , r j > 1  with  1 / l j + 1 / r j = 1  and  w j > 0 , where  j = 1 , 2 , , n . Then
j = 1 n w j 1 l j j = 1 n w j l j j = 1 m 1 l j s j = 1 s 1 r j s j = 1 s 1 r j .
Proof. 
By utilizing Lemma 5 with  α j = w j  and  β j = 1 / l j , we deduce that
j = 1 s w j 1 l j j = 1 s w j l j j = 1 s 1 l j j = 1 s 1 l j j = 1 s 1 l j .
Since  j = 1 s ( 1 / l j ) = j = 1 s 1 ( 1 / r j ) = s j = 1 s ( 1 / r j ) , then (17) becomes
j = 1 s w j 1 l j j = 1 s w j l j j = 1 s 1 l j s j = 1 s 1 r j s j = 1 s 1 r j ,
which is (16). □
Theorem 6.
Let  a j , ε j T l j , r j > 1  such that  1 / l j + 1 / r j = 1  and  λ j C r d ( a j , ε j T , R )  with  λ j ( ε j ) = 0 ;   j = 1 , 2 , , s . Then
a s ε s a 1 ε 1 j = 1 s λ j ( ξ j ) j = 1 s ε j ξ j l j j = 1 s 1 l j Δ ξ 1 Δ ξ s A j = 1 s a j ε j σ ( ξ j ) a j λ j Δ ( ξ j ) r j Δ ξ j 1 r j ,
where
A = s j = 1 s 1 r j j = 1 s 1 r j s j = 1 s ε j a j 1 l j .
Proof. 
By utilizing the property (5) of Theorem 4, we deduce that
ξ j ε j λ j Δ ( z j ) Δ z j ξ j ε j λ j Δ ( z j ) Δ z j .
Since  λ j ( ε j ) = 0 , then
ξ j ε j λ j Δ ( z j ) Δ z j = λ j ( z j ) ξ j ε j = λ j ( ε j ) λ j ( ξ j ) = λ j ( ξ j ) ,
and then
ξ j ε j λ j Δ ( z j ) Δ z j = λ j ( ξ j ) .
Substituting (21) into (20), we observe that
λ j ( ξ j ) ξ j ε j λ j Δ ( z j ) Δ z j for j = 1 , 2 , , s ,
therefore
j = 1 s λ j ( ξ j ) j = 1 s ξ j ε j λ j Δ ( z j ) Δ z j .
Applying (13) on  ξ j ε j λ j Δ ( z j ) Δ z j  with  l j , r j > 1 ( z j ) = λ j Δ ( z j )  and  Υ ( z j ) = 1 , we have
ξ j ε j λ j Δ ( z j ) Δ z j ξ j ε j λ j Δ ( z j ) r j Δ z j 1 r j ξ j ε j Δ z j 1 l j = ε j ξ j 1 l j ξ j ε j λ j Δ ( z j ) r j Δ z j 1 r j ,
and then
j = 1 s ξ j ε j λ j Δ ( z j ) Δ z j j = 1 s ε j ξ j 1 l j ξ j ε j λ j Δ ( z j ) r j Δ z j 1 r j = j = 1 s ε j ξ j 1 l j j = 1 s ξ j ε j λ j Δ ( z j ) r j Δ z j 1 r j .
By substituting (23) into (22) and applying (16) on  j = 1 s ε j ξ j ( 1 / l j )  with  w j = ε j ξ j , we acquire
j = 1 s λ j ( ξ j ) j = 1 s ε j ξ j 1 l j j = 1 s ξ j ε j λ j Δ ( z j ) r j Δ z j 1 r j j = 1 s ε j ξ j l j j = 1 s 1 l j s j = 1 s 1 r j s j = 1 s 1 r j j = 1 s ξ j ε j λ j Δ ( z j ) r j Δ z j 1 r j .
Dividing (24) on  j = 1 s ε j ξ j l j j = 1 s 1 l j  and integrating over  ξ j  from  a j  to  ε j j = 1 , 2 , , s , we conclude that
a s ε s a 1 ε 1 j = 1 s λ j ( ξ j ) j = 1 s ε j ξ j l j j = 1 s 1 l j Δ ξ 1 Δ ξ s s j = 1 s 1 r j j = 1 s 1 r j s a s ε s a 1 ε 1 j = 1 s ξ j ε j λ j Δ ( z j ) r j Δ z j 1 r j Δ ξ 1 Δ ξ s = s j = 1 s 1 r j j = 1 s 1 r j s j = 1 s a j ε j ξ j ε j λ j Δ ( z j ) r j Δ z j 1 r j Δ ξ j .
Again, using (13) on  a j ε j ξ j ε j λ j Δ ( z j ) r j Δ z j 1 r j Δ ξ j  with  l j , r j > 1 ξ j = ξ j ε j λ j Δ ( z j ) r j Δ z j 1 r j  and  Υ ξ j = 1 , we obtain
a j ε j ξ j ε j λ j Δ ( z j ) r j Δ z j 1 r j Δ ξ j a j ε j ξ j ε j λ j Δ ( z j ) r j Δ z j Δ ξ j 1 r j a j ε j Δ ξ j 1 l j = ε j a j 1 l j a j ε j ξ j ε j λ j Δ ( z j ) r j Δ z j Δ ξ j 1 r j ,
and then
j = 1 s a j ε j ξ j ε j λ j Δ ( z j ) r j Δ z j 1 r j Δ ξ j j = 1 s ε j a j 1 l j a j ε j ξ j ε j λ j Δ ( z j ) r j Δ z j Δ ξ j 1 r j = j = 1 s ε j a j 1 l j j = 1 s a j ε j ξ j ε j λ j Δ ( z j ) r j Δ z j Δ ξ j 1 r j .
Substituting (26) into (25), we obtain
a s ε s a 1 ε 1 j = 1 s λ j ( ξ j ) j = 1 s ε j ξ j l j j = 1 s 1 l j Δ ξ 1 Δ ξ s s j = 1 s 1 r j j = 1 s 1 r j s j = 1 s ε j a j 1 l j j = 1 s a j ε j ξ j ε j λ j Δ ( z j ) r j Δ z j Δ ξ j 1 r j .
Now, using (12) on  a j ε j ξ j ε j λ j Δ ( z j ) r j Δ z j Δ ξ j  with  ω ( ξ j ) = ξ j ε j λ j Δ ( z j ) r j Δ z j  and  κ Δ ( ξ j ) = 1 ,  we find that
a j ε j ξ j ε j λ j Δ ( z j ) r j Δ z j Δ ξ j = ξ j ε j λ j Δ ( z j ) r j Δ z j κ ( ξ j ) a j ε j + a j ε j λ j Δ ( ξ j ) r j κ σ ( ξ j ) Δ ξ j = a j ε j λ j Δ ( ξ j ) r j σ ( ξ j ) a j Δ ξ j ,
where  κ ( ξ j ) = ξ j a j . Combining (28) with (27), we obtain
a s ε s a 1 ε 1 j = 1 s λ j ( ξ j ) j = 1 s ε j ξ j l j j = 1 s 1 l j Δ ξ 1 Δ ξ s s j = 1 s 1 r j j = 1 s 1 r j s j = 1 s ε j a j 1 l j × j = 1 s a j ε j λ j Δ ( ξ j ) r j σ ( ξ j ) a j Δ ξ j 1 r j = A j = 1 s a j ε j λ j Δ ( ξ j ) r j σ ( ξ j ) a j Δ ξ j 1 r j .
Hence, (24) is proved. □
Corollary 1.
Let  T = Z  in Theorem 6,  a j , ε j N l j , r j > 1  such that  1 / r j + 1 / l j = 1  and  λ j  be real sequences with  λ j ( ε j ) = 0 ;   j = 1 , 2 , , s . Then,  σ ( ξ j ) = ξ j + 1  and
ξ 1 = a 1 ε 1 1 ξ 2 = a 2 ε 2 1 ξ s = a s ε s 1 j = 1 s λ j ( ξ j ) j = 1 s ε j ξ j l j j = 1 s 1 l j A j = 1 s ξ j = a j ε j 1 ξ j a j + 1 Δ λ j ( ξ j ) r j 1 r j .
Here, Δ is the forward difference operator and A is specified as in (19).
Corollary 2.
Let  T = R  in Theorem 6,  a j , ε j R l j , r j > 1  such that  1 / r j + 1 / l j = 1  and  λ j C ( a j , ε j , R )  with  λ j ( ε j ) = 0 ;   j = 1 , 2 , , s . Then,  σ ( ξ j ) = ξ j  and
a s ε s a 1 ε 1 j = 1 s λ j ( ξ j ) j = 1 s ε j ξ j l j j = 1 s 1 l j d ξ 1 d ξ s A j = 1 s a j ε j λ j ( ξ j ) r j ξ j a j d ξ j 1 r j ,
where A is given by (19).
Corollary 3.
Let  T = q Z  for  q > 1 l j , r j > 1  such that  1 / r j + 1 / l j = 1  and  λ j  be real sequences with  λ j ( ε j ) = 0 ;   j = 1 , 2 , , s . Then,  σ ( ξ j ) = q ξ j  and
ξ s = log q a s log q ε s 1 ξ 1 = log q a 1 log q ε 1 1 ( q 1 ) n j = 1 s ξ j λ j ( ξ j ) j = 1 s ε j ξ j l j j = 1 s 1 l j A j = 1 s ξ j = log q a j log q ε j 1 ( q 1 ) q ξ j a j ξ j Δ q λ j ( ξ j ) r j 1 r j ,
where A is given by (19) and
Δ q λ j ( ξ j ) = λ j ( q ξ j ) λ j ξ j q 1 ξ j ξ j T { 0 } .
In the following, we generalize the last theorem for two variables.
Theorem 7.
Let  a j , ε j , ϵ j T l j , r j > 1  such that  1 / l j + 1 / r j = 1 λ j C C r d ( a j , ε j T × a j , ϵ j T R )  with  λ j ( τ j , ε j ) = λ j ( ϵ j , ξ j ) = 0  for  ξ j a j , ε j T  and  τ j a j , ϵ j T ;   j = 1 , 2 , , s . Then
a s ϵ s a 1 ϵ 1 a s ε s a 1 ε 1 j = 1 s λ j ( τ j , ξ j ) j = 1 s ϵ j τ j ( ε j ξ j ) l j j = 1 s 1 l j Δ 2 ξ 1 Δ 2 ξ s Δ 1 τ 1 Δ 1 τ s B j = 1 s a j ϵ j a j ε j σ τ j a j σ ξ j a j λ j Δ 2 Δ 1 ( τ j , ξ j ) r j Δ 2 ξ j Δ 1 τ j 1 r j ,
where
B = s j = 1 s 1 r j j = 1 s 1 r j s j = 1 s ϵ j a j 1 l j ε j a j 1 l j .
Here, the  Δ 1 derivative of  λ ( τ , ξ )  is the  Δ derivative with respect to the first variable τ and the  Δ 2 derivative of  λ ( τ , ξ )  is the  Δ derivative with respect to the second variable ξ.
Proof. 
Applying the property (5) of Theorem 4, Fubini’s theorem and using the hypothesis  λ j ( τ j , ε j ) = λ j ( ϵ j , ξ j ) = 0 , we obtain
τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( t j , ϑ j ) Δ 2 ϑ j Δ 1 z j τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) Δ 2 ϑ j Δ 1 z j = τ j ϵ j ξ j ε j λ j Δ 2 ( z j , ϑ j ) Δ 1 Δ 2 ϑ j Δ 1 z j = ξ j ε j τ j ϵ j λ j Δ 2 ( z j , ϑ j ) Δ 1 Δ 1 z j Δ 2 ϑ j = ξ j ε j λ j Δ 2 ( ϵ j , ϑ j ) λ j Δ 2 ( τ j , ϑ j ) Δ 2 ϑ j = λ j ( ϵ j , ε j ) λ j ( ϵ j , ξ j ) + λ j ( τ j , ξ j ) λ j ( τ j , ε j ) = λ j ( τ j , ξ j ) ,
and then
j = 1 s λ j ( τ j , ξ j ) j = 1 s τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) Δ 2 ϑ j Δ 1 z j .
Applying (14) on  τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) Δ 2 ϑ j Δ 1 z j  with  l j , r j > 1 f ( z j , ϑ j ) = 1  and  g ( z j , ϑ j ) = λ j Δ 2 Δ 1 ( z j , ϑ j ) , we see that
τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) Δ 2 ϑ j Δ 1 z j τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j 1 r j τ j ϵ j ξ j ε j Δ 2 ϑ j Δ 1 z j 1 l j = ϵ j τ j 1 l j ε j ξ j 1 l j τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j 1 r j ,
and then
j = 1 s τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) Δ 2 ϑ j Δ 1 z j j = 1 s ϵ j τ j 1 l j ε j ξ j 1 l j τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j 1 r j = j = 1 s ϵ j τ j 1 l j ε j ξ j 1 l j j = 1 s τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j 1 r j .
Substituting (32) into (31) and applying (16) on  w j = ϵ j τ j ε j ξ j , we obtain
j = 1 s λ j ( τ j , ξ j ) j = 1 s ϵ j τ j 1 l j ε j ξ j 1 l j j = 1 s τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j 1 r j j = 1 s ϵ j τ j ( ε j ξ j ) l j j = 1 s 1 l j s j = 1 s 1 r j s j = 1 s 1 r j j = 1 s τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j 1 r j .
Note that
j = 1 s τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j 1 r j = τ 1 ϵ 1 ξ 1 ε 1 λ 1 Δ 2 Δ 1 ( z 1 , ϑ 1 ) r 1 Δ 2 ϑ 1 Δ 1 z 1 1 r 1 τ s ϵ s ξ s ε s λ s Δ 2 Δ 1 ( z s , ϑ s ) r s Δ 2 ϑ s Δ 1 z s 1 r s ,
and then
a s ϵ s a 1 ϵ 1 a s ε s a 1 ε 1 j = 1 s τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j 1 r j Δ 2 ξ 1 Δ 2 ξ s Δ 1 τ 1 Δ 1 τ s = a 1 ϵ 1 a 1 ε 1 τ 1 ϵ 1 ξ 1 ε 1 λ 1 Δ 2 Δ 1 ( z 1 , ϑ 1 ) r 1 Δ 2 ϑ 1 Δ 1 z 1 1 r 1 Δ 2 ξ 1 Δ 1 τ 1 × a s ϵ s a s ε s τ s ϵ s ξ s ε s λ s Δ 2 Δ 1 ( z s , ϑ s ) r s Δ 2 ϑ s Δ 1 z s 1 r s Δ 2 ξ s Δ 1 τ s = j = 1 s a j ϵ j a j ε j τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j 1 r j Δ 2 ξ j Δ 1 τ j .
Dividing (33) on  j = 1 s ϵ j τ j ( ε j ξ j ) l j j = 1 s 1 l j , integrating over  ξ j  from  a j  to  ε j  and over  τ j  from  a j  to  ϵ j  for  j = 1 , 2 , , s  and using (34), we conclude that
a s ϵ s a 1 ϵ 1 a s ε s a 1 ε 1 j = 1 s λ j ( τ j , ξ j ) j = 1 s ϵ j τ j ( ε j ξ j ) l j j = 1 s 1 l j Δ 2 ξ 1 Δ 2 ξ s Δ 1 τ 1 Δ 1 τ s s j = 1 s 1 r j j = 1 s 1 r j s × a s ϵ s a 1 ϵ 1 a s ε s a 1 ε 1 j = 1 s τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j 1 r j Δ 2 ξ 1 Δ 2 ξ s Δ 1 τ 1 Δ 1 τ s = s j = 1 s 1 r j j = 1 s 1 r j s j = 1 s a j ϵ j a j ε j τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j 1 r j Δ 2 ξ j Δ 1 τ j .
Again, using (14) on  a j ϵ j a j ε j τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j 1 r j Δ 2 ξ j Δ 1 τ j  with exponents  r j , l j > 1  and  f ( ξ j , τ j ) = 1 ,
g ( ξ j , τ j ) = τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j 1 r j ,
we observe that
a j ϵ j a j ε j τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j 1 r j Δ 2 ξ j Δ 1 τ j a j ϵ j a j ε j τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j Δ 2 ξ j Δ 1 τ j 1 r j a j ϵ j a j ε j Δ 2 ξ j Δ 1 τ j 1 l j = ϵ j a j 1 l j ε j a j 1 l j a j ϵ j a j ε j τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j Δ 2 ξ j Δ 1 τ j 1 r j ,
and then
j = 1 s a j ϵ j a j ε j τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j 1 r j Δ 2 ξ j Δ 1 τ j j = 1 s ϵ j a j 1 l j ε j a j 1 l j a j ϵ j a j ε j τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j Δ 2 ξ j Δ 1 τ j 1 r j = j = 1 s ϵ j a j 1 l j ε j a j 1 l j × j = 1 s a j ϵ j a j ε j τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j Δ 2 ξ j Δ 1 τ j 1 r j .
Substituting (36) into (35) and applying the Fubini theorem, we see that
a s ϵ s a 1 ϵ 1 a s ε s a 1 ε 1 j = 1 s λ j ( τ j , ξ j ) j = 1 s ϵ j τ j ( ε j ξ j ) l j j = 1 s 1 l j Δ 2 ξ 1 Δ 2 ξ s Δ 1 τ 1 Δ 1 τ s s j = 1 s 1 r j j = 1 s 1 r j s j = 1 s ϵ j a j 1 l j ε j a j 1 l j × j = 1 s a j ϵ j a j ε j τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j Δ 2 ξ j Δ 1 τ j 1 r j = s j = 1 s 1 r j j = 1 s 1 r j s j = 1 s ϵ j a j 1 l j ε j a j 1 l j × j = 1 s a j ε j a j ϵ j τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j Δ 1 τ j Δ 2 ξ j 1 r j .
Now, by applying (12) on  a j ϵ j τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j Δ 1 τ j  with
ω ( τ j ) = τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j and κ Δ ( τ j ) = 1 ,
we find that
a j ϵ j τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j Δ 1 τ j = κ ( τ j ) τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j a j ϵ j + a j ϵ j κ σ ( τ j ) ξ j ε j λ j Δ 2 Δ 1 ( τ j , ϑ j ) r j Δ 2 ϑ j Δ 1 τ j = a j ϵ j σ τ j a j ξ j ε j λ j Δ 2 Δ 1 ( τ j , ϑ j ) r j Δ 2 ϑ j Δ 1 τ j ,
where  κ ( τ j ) = τ j a j . By integrating (38) over  ξ j  from  a j  to  ε j  and using the Fubini theorem, we have
a j ε j a j ϵ j τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j Δ 1 τ j Δ 2 ξ j = a j ε j a j ϵ j σ τ j a j ξ j ε j λ j Δ 2 Δ 1 ( τ j , ϑ j ) r j Δ 2 ϑ j Δ 1 τ j Δ 2 ξ j = a j ϵ j a j ε j σ τ j a j ξ j ε j λ j Δ 2 Δ 1 ( τ j , ϑ j ) r j Δ 2 ϑ j Δ 2 ξ j Δ 1 τ j = a j ϵ j σ τ j a j a j ε j ξ j ε j λ j Δ 2 Δ 1 ( τ j , ϑ j ) r j Δ 2 ϑ j Δ 2 ξ j Δ 1 τ j .
Again, using (12) on the term  a j ε j ξ j ε j λ j Δ 2 Δ 1 ( τ j , ϑ j ) r j Δ 2 ϑ j Δ 2 ξ j  with
ω ( τ j ) = ξ j ε j λ j Δ 2 Δ 1 ( τ j , ϑ j ) r j Δ 2 ϑ j and κ Δ ξ j = 1 ,
we see that
a j ε j ξ j ε j λ j Δ 2 Δ 1 ( τ j , ϑ j ) r j Δ 2 ϑ j Δ 2 ξ j = κ ξ j ξ j ε j λ j Δ 2 Δ 1 ( τ j , ϑ j ) r j Δ 2 ϑ j a j ε j + a j ε j κ σ ξ j λ j Δ 2 Δ 1 ( τ j , ξ j ) r j Δ 2 ξ j = a j ε j σ ξ j a j λ j Δ 2 Δ 1 ( τ j , ξ j ) r j Δ 2 ξ j ,
where  κ ξ j = ξ j a j . Substituting (40) into (39) and applying Fubini’s theorem, we obtain
a j ε j a j ϵ j τ j ϵ j ξ j ε j λ j Δ 2 Δ 1 ( z j , ϑ j ) r j Δ 2 ϑ j Δ 1 z j Δ 1 τ j Δ 2 ξ j = a j ϵ j σ τ j a j a j ε j σ ξ j a j λ j Δ 2 Δ 1 ( τ j , ξ j ) r j Δ 2 ξ j Δ 1 τ j = a j ϵ j a j ε j σ τ j a j σ ξ j a j λ j Δ 2 Δ 1 ( τ j , ξ j ) r j Δ 2 ξ j Δ 1 τ j = a j ε j a j ϵ j σ τ j a j σ ξ j a j λ j Δ 2 Δ 1 ( τ j , ξ j ) r j Δ 1 τ j Δ 2 ξ j .
Substituting (41) into (37), we obtain
a s ϵ s a 1 ϵ 1 a s ε s a 1 ε 1 j = 1 s λ j ( τ j , ξ j ) j = 1 s ϵ j τ j ( ε j ξ j ) l j j = 1 s 1 l j Δ 2 ξ 1 Δ 2 ξ s Δ 1 τ 1 Δ 1 τ s s j = 1 s 1 r j j = 1 s 1 r j s j = 1 s ϵ j a j 1 l j ε j a j 1 l j × j = 1 s a j ε j a j ϵ j σ τ j a j σ ξ j a j λ j Δ 2 Δ 1 ( τ j , ξ j ) r j Δ 2 ξ j Δ 1 τ j 1 r j = B j = 1 s a j ε j a j ϵ j σ τ j a j σ ξ j a j λ j Δ 2 Δ 1 ( τ j , ξ j ) r j Δ 2 ξ j Δ 1 τ j 1 r j .
Hence, (29) is proved. □
Corollary 4.
Let  T = Z  in Theorem 7,  a j , ε j , ϵ j Z r j , l j > 1  such that  1 / r j + 1 / l j = 1  and  λ j  be real sequences with  λ j ( τ j , ε j ) = λ j ( ϵ j , ξ j ) = 0  for  ξ j a j , ε j  and  τ j a j , ϵ j , where  j = 1 , 2 , , s . Then,  σ τ j = τ j + 1 σ ξ j = ξ j + 1  and
τ s = a s ϵ s 1 τ 1 = a 1 ϵ 1 1 ξ s = a s ε s 1 ξ 1 = a 1 ε 1 1 j = 1 s λ j ( τ j , ξ j ) j = 1 s ϵ j τ j ( ε j ξ j ) l j j = 1 s 1 l j B j = 1 s ξ j = a j ε j 1 τ j = a j ϵ j 1 τ j a j + 1 ξ j a j + 1 Δ 2 Δ 1 λ j ( τ j , ξ j ) r j 1 r j ,
where B is given by (30).
Corollary 5.
Let  T = R  in Theorem 7,  a j , ε j , ϵ j R r j , l j > 1  such that  1 / r j + 1 / l j = 1  and  λ j C C ( a j , ε j × a j , ϵ j , R )  with  λ j ( τ j , ε j ) = λ j ( ϵ j , ξ j ) = 0  for  ξ j a j , ε j T  and  τ j a j , ϵ j T , where  j = 1 , 2 , , s . Then,  σ τ j = τ j σ ξ j = ξ j  and
a s ϵ s a 1 ϵ 1 a s ε s a 1 ε 1 j = 1 s λ j ( τ j , ξ j ) j = 1 s ϵ j τ j ( ε j ξ j ) l j j = 1 s 1 l j d ξ 1 d ξ s d τ 1 d τ s B j = 1 s a j ε j a j ϵ j τ j a j ξ j a j 2 λ j ( τ j , ξ j ) ξ j τ j r j d ξ j d τ j 1 r j ,
where B is given by (30).
Corollary 6.
Let  T = q Z  for  q > 1 a j , ε j , ϵ j T r j , l j > 1  such that  1 / r j + 1 / l j = 1  and  λ j  are real sequences with  λ j ( τ j , ε j ) = λ j ( ϵ j , ξ j ) = 0  for  ξ j a j , ε j  and  τ j a j , ϵ j , where  j = 1 , 2 , , s . Then,  σ τ j = q τ j σ ξ j = q ξ j  and
τ s = log q a s log q ϵ s 1 τ 1 = log q a 1 log q ϵ 1 1 ξ s = log q a s log q ε s 1 ξ 1 = log q a 1 log q ε 1 1 ( q 1 ) 2 n j = 1 s τ j ξ j λ j ( τ j , ξ j ) j = 1 s ϵ j τ j ( ε j ξ j ) l j j = 1 s 1 l j B j = 1 s τ j = log q a j log q ϵ j 1 ξ j = log q a j log q ε j 1 q τ j a j q ξ j a j ( q 1 ) 2 τ j ξ j Δ q 2 Δ q 1 λ j ( τ j , ξ j ) r j 1 r j .
Here, B is given by (30) and the  Δ q 1 derivative of  λ ( τ , ξ )  is the  Δ q derivative with respect to the first variable τ and the  Δ q 2 derivative of  λ ( τ , ξ )  is the  Δ q derivative with respect to the second variable ξ.

4. Conclusions

In this study, a generalization of the Hilbert-type inequalities within the framework of time scales in delta calculus. We should note that we used different conditions from some previous results; thus, various refinements of the classic Hilbert-type inequalities are obtained. Throughout the work, it is shown that some known results from the literature are obtained as particular cases of ours. In future research, we aim to showcase these inequalities by utilizing nabla calculus on time scales.

Author Contributions

Investigation, software and writing—original draft, H.M.R. and A.I.S.; supervision, writing—review editing and funding, J.E.N.V., M.A. and M.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number RGP 2/414/44.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number RGP 2/414/44.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hilbert, D. Grundzüge Einer Allgemeinen Theorie der Linearen Intergraleichungen; Verlag: Göttingen, Germany, 1906; pp. 157–227. [Google Scholar]
  2. Schur, I. Bernerkungen sur theorie der beschrankten Bilinearformen mit unendlich vielen veranderlichen. J. Math. 1911, 140, 1–28. [Google Scholar]
  3. Hardy, G.H. Note on a theorem of Hilbert Concerning Series of Positive Term. Proc. Lond. Math. Soc. 1925, 23, 45–46. [Google Scholar]
  4. Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
  5. Pachpatte, B.G. Inequalities Similar to Certain Extensions of Hilbert’s Inequality. J. Math. Anal. Appl. 2000, 243, 217–227. [Google Scholar] [CrossRef]
  6. Zhao, C.-J.; Chen, L.-Y.; Cheung, W.-S. On some new Hilbert-type inequalities. Math. Slovaca 2011, 61, 15–28. [Google Scholar]
  7. Kim, Y.H.; Kim, B.I. An Analogue of Hilbert’s inequality and its extensions. Bull. Korean Math. Soc. 2002, 39, 377–388. [Google Scholar] [CrossRef]
  8. Pachpatte, B.G. A note on Hilbert type inequality. Tamkang J. Math. 1998, 29, 293–298. [Google Scholar] [CrossRef]
  9. Wang, W.; Zhang, H.; Jiang, X.; Yang, X. A high-order and efficient numerical technique for the nonlocal neutron diffusion equation representing neutron transport in a nuclear reactor. Ann. Nucl. 2024, 195, 110163. [Google Scholar] [CrossRef]
  10. Yang, X.; Wu, L.; Zhang, H. A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity. Appl. Math. Comput. 2023, 457, 128192. [Google Scholar] [CrossRef]
  11. AlNemer, G.; Saied, A.I.; Zakarya, M.; Abd El-Hamid, H.A.; Bazighifan, O.; Rezk, H.M. Some New Reverse Hilbert’s Inequalities on Time Scales. Symmetry 2021, 13, 2431. [Google Scholar] [CrossRef]
  12. Bibi, R.; Bohner, M.; Pečarić, J.; Varošanec, S. Minkowski and Beckenbach-Dresher inequalities and functionals on time scales. J. Math. Inequal. 2013, 7, 299–312. [Google Scholar] [CrossRef]
  13. Bohner, M.; Georgiev, S.G. Multiple integration on time scales. In Multivariable Dynamic Calculus on Time Scales; Springer: Cham, Switzerland, 2016; pp. 449–515. [Google Scholar]
  14. Oguntuase, J.A.; Persson, L.E. Time scales Hardy-type inequalities via superquadracity. Ann. Funct. Anal. 2014, 5, 61–73. [Google Scholar] [CrossRef]
  15. Řehak, P. Hardy inequality on time scales and its application to half-linear dynamic equations. J. Inequal. Appl. 2005, 2005, 495–507. [Google Scholar] [CrossRef]
  16. Rezk, H.M.; AlNemer, G.; Saied, A.I.; Bazighifan, O.; Zakarya, M. Some New Generalizations of Reverse Hilbert-Type Inequalities on Time Scales. Symmetry 2022, 14, 750. [Google Scholar] [CrossRef]
  17. Zakarya, M.; Saied, A.I.; AlNemer, G.; Rezk, H.M. A study on some new reverse Hilbert-type inequalities and its generalizations on time scales. J. Math. 2022, 2022, 6285367. [Google Scholar] [CrossRef]
  18. Tuna, A.; Kutukcu, S. Some integral inequalities on time scales. Appl. Math. Mech. 2008, 29, 23–29. [Google Scholar] [CrossRef]
  19. Agarwal, R.P.; O’Regan, D.; Saker, S.H. Dynamic Inequalities on Time Scales; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
  20. Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
  21. Bohner, M.; Guseinov, G.S. Multiple integration on time scales. Dyn. Syst. Appl. 2005, 14, 579–606. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Rezk, H.M.; Valdés, J.E.N.; Ali, M.; Saied, A.I.; Zakarya, M. Delta Calculus on Time Scale Formulas That Are Similar to Hilbert-Type Inequalities. Mathematics 2024, 12, 104. https://doi.org/10.3390/math12010104

AMA Style

Rezk HM, Valdés JEN, Ali M, Saied AI, Zakarya M. Delta Calculus on Time Scale Formulas That Are Similar to Hilbert-Type Inequalities. Mathematics. 2024; 12(1):104. https://doi.org/10.3390/math12010104

Chicago/Turabian Style

Rezk, Haytham M., Juan E. Nápoles Valdés, Maha Ali, Ahmed I. Saied, and Mohammed Zakarya. 2024. "Delta Calculus on Time Scale Formulas That Are Similar to Hilbert-Type Inequalities" Mathematics 12, no. 1: 104. https://doi.org/10.3390/math12010104

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop