Expected Values of Scalar-Valued Functions of a Complex Wishart Matrix
Abstract
1. Introduction
2. Some Known Definitions and Results
3. Expressions for
4. Expressions for
5. Special Cases
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Goodman, N.R. Statistical analysis based on a certain multivariate complex Gaussian distribution (An introduction). Ann. Math. Stat. 1963, 34, 152–177. [Google Scholar] [CrossRef]
- James, A.T. Distributions of matrix variate and latent roots derived from normal samples. Ann. Math. Stat. 1964, 35, 475–501. [Google Scholar] [CrossRef]
- Khatri, C.G. Classical statistical analysis based on a certain multivariate complex Gaussian distribution. Ann. Math. Stat. 1965, 36, 98–114. [Google Scholar] [CrossRef]
- Khatri, C.G. On certain distribution problems based on positive definite quadratic functions in normal vectors. Ann. Math. Stat. 1966, 37, 468–479. [Google Scholar] [CrossRef]
- Krishnaiah, P.R. Some recent developments on complex multivariate distributions. J. Multivar. Anal. 1976, 6, 1–30. [Google Scholar] [CrossRef]
- Srivastava, M.S. On the complex Wishart distribution. Ann. Math. Stat. 1965, 36, 313–315. [Google Scholar] [CrossRef]
- Shaman, P. The inverted complex Wishart distribution and its application to spectral estimation. J. Multivar. Anal. 1980, 10, 51–59. [Google Scholar] [CrossRef]
- Tan, W.Y. Some distribution theory associated with complex Gaussian distribution. Tamkang J. 1968, 7, 263–302. [Google Scholar]
- Alfano, G.; Tulino, A.; Lozano, A.; Verdú, S. Random Matrix Transforms and Applications via Non-Asymptotic Eigenanalysis; International Zurich Seminar on Communications: Zurich, Switzerland, 2006; pp. 18–21. [Google Scholar]
- Carmeli, M. Statistical Theory and Random Matrices in Physics; Marcel Dekker: New York, NY, USA, 1983. [Google Scholar]
- Cunden, F.D.; Dahlqvist, A.; O’Connell, N. Integer moments of complex Wishart matrices and Hurwitz numbers. Ann. Inst. Henri Poincaré D 2021, 8, 243–268. [Google Scholar] [CrossRef]
- Deng, X.; López-Martínez, C.; Chen, J.; Han, P. Statistical Modeling of Polarimetric SAR Data: A Survey and Challenges. Remote Sens. 2008, 9, 348. [Google Scholar] [CrossRef]
- Ermolova, N.Y.; Tirkkonen, O. Distribution of diagonal elements of a general central complex Wishart matrix. IEEE Commun. Lett. 2012, 16, 1373–1376. [Google Scholar] [CrossRef]
- Gomez, L.; Alvarez, L.; Mazorra, L.; Frery, A.C. Classification of complex Wishart matrices with a diffusion-reaction system guided by stochastic distances. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20150118. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S. Eigenvalue statistics for the sum of two complex Wishart matrices. EPL 2014, 107, 60002. [Google Scholar] [CrossRef]
- Nielsen, A.A.; Skriver, H.; Conradsen, K. Complex Wishart Distribution Based Analysis of Polarimetric Synthetic Aperture Radar Data. In Proceedings of the 2007 International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, Leuven, Belgium, 18–20 July 2007; pp. 1–6. [Google Scholar]
- Shakil, M.; Ahsanullah, M. Some inferences on the distribution of the Demmel condition number of complex Wishart matrices. Spec. Matrices 2017, 5, 127–138. [Google Scholar] [CrossRef]
- Tague, J.A.; Caldwell, C.I. Expectations of useful complex Wishart forms. Multidimens. Syst. Signal Process. 1994, 5, 263–279. [Google Scholar] [CrossRef]
- Tralli, V.; Conti, A. Noncentral complex Wishart matrices: Moments and correlation of minors. Random Matrices Theory Appl. 2022, 11, 2250009. [Google Scholar] [CrossRef]
- Andersen, H.H.; Højbjerre, M.; Sørensen, D.; Eriksen, P.S. Linear and Graphical Models; For the Multivariate Complex Normal Distribution, Lecture Notes in Statistics, 101; Springer: New York, NY, USA, 1995. [Google Scholar]
- Gupta, A.K.; Nagar, D.K. Matrix Variate Distributions; Chapman and Hall/CRC: Boca Raton, FL, USA, 2000. [Google Scholar]
- Nagar, D.K.; Gupta, A.K.; Sánchez, L.E. A class of integral identities with Hermitian matrix argument. Proc. Am. Math. Soc. 2006, 134, 3329–3341. [Google Scholar] [CrossRef]
- Letac, G.; Maasam, H. The noncentral Wishart as an exponential family, and its moments. J. Multivar. Anal. 2008, 99, 1393–1417. [Google Scholar] [CrossRef]
- Nagar, D.K.; Roldán-Correa, A.; Gupta, A.K. Extended matrix variate gamma and beta functions. J. Multivar. Anal. 2013, 122, 53–69. [Google Scholar] [CrossRef]
- Di Nardo, E. On a symbolic representation of non-central Wishart random matrices with applications. J. Multivar. Anal. 2014, 125, 121–135. [Google Scholar] [CrossRef]
- Dharmawansa, P.; McKay, M.R. Extreme eigenvalue distributions of some complex correlated non-central Wishart and gamma-Wishart random matrices. J. Multivar. Anal. 2011, 102, 847–868. [Google Scholar] [CrossRef]
- Hillier, G.; Kan, R. Properties of the inverse of a noncentral Wishart matrix. Econom. Theory 2022, 38, 1092–1116. [Google Scholar] [CrossRef]
- Wahba, G. Cross-Spectral Distribution Theory for Mixed Spectra and Estimation of Prediction Filter Coefficients. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 1966. [Google Scholar]
- Sultan, S.A.; Tracy, D.S. Moments of the complex Wishart distribution. Int. J. Math. Stat. Sci. 1999, 8, 51–62. [Google Scholar]
- Maiwald, D.; Kraus, D. Calculation of moments of complex Wishart and complex inverse Wishart distributed matrices. IEE Proc.-Radar Sonar Navig. 2000, 147, 162–168. [Google Scholar] [CrossRef]
- Graczyk, P.; Letac, G.; Massam, H. The complex Wishart distribution and the symmetric group. Ann. Stat. 2003, 31, 287–309. [Google Scholar] [CrossRef]
- Nagar, D.K.; Gupta, A.K. Expectations of functions of complex Wishart matrix. Acta Appl. Math. 2011, 113, 265–288. [Google Scholar] [CrossRef]
- Pielaszkiewicz, J.; von Rosen, D.; Singull, M. On , where . Commun. Stat.—Theory Methods 2017, 46, 2990–3005. [Google Scholar] [CrossRef]
- Holgersson, T.; Pielaszkiewicz, J. A Collection of Moments of the Wishart Distribution. In Recent Developments in Multivariate and Random Matrix Analysis; Holgersson, T., Singull, M., Eds.; Springer: Cham, Switzerland, 2020; pp. 147–162. [Google Scholar]
- Khatri, C.G. On the moments of traces of two matrices in three situations for complex multivariate normal populations. Sankhyā Indian J. Stat. Ser. A 1970, 32, 65–80. [Google Scholar]
- Khatri, C.G.; Khattree, R.; Gupta, R.D. On a class of orthogonal invariant and residual independent matrix distributions. Sankhyā Indian J. Stat. Ser. B 1991, 53, 1–10. [Google Scholar]
- Gupta, A.K.; Nagar, D.K.; Vélez-Carvajal, A.M. Unitary invariant and residual independent matrix distributions. Comput. Appl. Math. 2009, 28, 63–86. [Google Scholar] [CrossRef]
a | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagar, D.K.; Roldán-Correa, A.; Nadarajah, S. Expected Values of Scalar-Valued Functions of a Complex Wishart Matrix. Mathematics 2023, 11, 2162. https://doi.org/10.3390/math11092162
Nagar DK, Roldán-Correa A, Nadarajah S. Expected Values of Scalar-Valued Functions of a Complex Wishart Matrix. Mathematics. 2023; 11(9):2162. https://doi.org/10.3390/math11092162
Chicago/Turabian StyleNagar, Daya K., Alejandro Roldán-Correa, and Saralees Nadarajah. 2023. "Expected Values of Scalar-Valued Functions of a Complex Wishart Matrix" Mathematics 11, no. 9: 2162. https://doi.org/10.3390/math11092162
APA StyleNagar, D. K., Roldán-Correa, A., & Nadarajah, S. (2023). Expected Values of Scalar-Valued Functions of a Complex Wishart Matrix. Mathematics, 11(9), 2162. https://doi.org/10.3390/math11092162