Fuzzy Mittag–Leffler–Hyers–Ulam–Rassias Stability of Stochastic Differential Equations
Abstract
1. Introduction and Mathematical Preliminaries
2. Fuzzy MLHUS Stability
3. Application
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morsi, N.N. On fuzzy pseudo-normed vector spaces. Fuzzy Sets Syst. 1988, 27, 351–372. [Google Scholar] [CrossRef]
- Jäger, G.; Shi, F. LM-fuzzy metric spaces and convergence. Mat. Vesn. 2019, 71, 31–44. [Google Scholar]
- Pourpasha, M.; Rassias, T.M.; Saadati, R.; Vaezpour, S. The stability of some differential equations. Math. Probl. Eng. 2011, 2011, 128479. [Google Scholar] [CrossRef][Green Version]
- Ali, A.; Gupta, V.; Abdeljawad, T.; Shah, K.; Jarad, F. Mathematical analysis of nonlocal implicit impulsive problem under Caputo fractional boundary conditions. Math. Probl. Eng. 2020, 2020, 7681479. [Google Scholar] [CrossRef]
- Naimi, A.; Tellab, B.; Altayeb, Y.; Moumen, A. Generalized Ulam–Hyers–Rassias Stability Results of Solution for Nonlinear Fractional Differential Problem with Boundary Conditions. Math. Probl. Eng. 2021, 2021, 7150739. [Google Scholar] [CrossRef]
- Vu, H.; Van Hoa, N. Hyers–Ulam stability of random functional differential equation involving fractional-order derivative. Comput. Appl. Math. 2022, 41, 204. [Google Scholar] [CrossRef]
- Chaharpashlou, R.; Saadati, R. Best approximation of a nonlinear fractional Volterra integro-differential equation in matrix MB-space. Adv. Differ. Equ. 2021, 2021, 118. [Google Scholar] [CrossRef]
- Younis, M.; Bahuguna, D. A unique approach to graph-based metric spaces with an application to rocket ascension. Comput. Appl. Math. 2023, 42, 44. [Google Scholar] [CrossRef]
- Hadžić, O.; Pap, E. Fixed Point Theory in Probabilistic Metric Spaces; Springer: Dordrecht, The Netherlands, 2001; Volume 536. [Google Scholar]
- Diaz, J.; Margolis, B. A fixed point theorem of the alternative, for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef][Green Version]
- Du, W.S.; Karapınar, E.; He, Z. Some simultaneous generalizations of well-known fixed point theorems and their applications to fixed point theory. Mathematics 2018, 6, 117. [Google Scholar] [CrossRef][Green Version]
- Romaguera, S.; Tirado, P. Characterizing complete fuzzy metric spaces via fixed point results. Mathematics 2020, 8, 273. [Google Scholar] [CrossRef][Green Version]
- Rakić, D.; Došenović, T.; Mitrović, Z.D.; de la Sen, M.; Radenović, S. Some fixed point theorems of Ćirić type in fuzzy metric spaces. Mathematics 2020, 8, 297. [Google Scholar] [CrossRef][Green Version]
- Rassias, J.; Murali, R.; Selvan, A.P. Mittag-Leffler-Hyers-Ulam Stability of Linear Differential Equations using Fourier Transforms. J. Comput. Anal. Appl. 2021, 29, 68–85. [Google Scholar]
- Narayanan, G.; Ali, M.S.; Rajchakit, G.; Jirawattanapanit, A.; Priya, B. Stability analysis for Nabla discrete fractional-order of Glucose–Insulin Regulatory System on diabetes mellitus with Mittag-Leffler kernel. Biomed. Signal Process. Control. 2023, 80, 104295. [Google Scholar] [CrossRef]
- Eghbali, N.; Kalvandi, V. A Fixed Point Approach to the Mittag-Leffler-Hyers-Ulam Stability of Differential Equations y(x)= F(x,y(x)). Appl. Math. E-Notes 2018, 18, 34–42. [Google Scholar]
- Eghbali, N.; Kalvandi, V.; Rassias, J.M. A fixed point approach to the Mittag-Leffler-Hyers-Ulam stability of a fractional integral equation. Open Math. 2016, 14, 237–246. [Google Scholar] [CrossRef][Green Version]
- Huang, H.; Carić, B.; Došenović, T.; Rakić, D.; Brdar, M. Fixed-Point Theorems in Fuzzy Metric Spaces via Fuzzy F-Contraction. Mathematics 2021, 9, 641. [Google Scholar] [CrossRef]
- Agilan, P.; Almazah, M.M.; Julietraja, K.; Alsinai, A. Classical and Fixed Point Approach to the Stability Analysis of a Bilateral Symmetric Additive Functional Equation in Fuzzy and Random Normed Spaces. Mathematics 2023, 11, 681. [Google Scholar] [CrossRef]
- Sadeghi, G.; Nazarianpoor, M.; Rassias, J.M. Solution and stability of quattuorvigintic functional equation in intuitionistic fuzzy normed spaces. Iran. J. Fuzzy Syst. 2018, 15, 13–30. [Google Scholar]
- Nadaban, S.; Bînzar, T.; Pater, F. Some fixed point theorems for ϕ-contractive mappings in fuzzy normed linear spaces. J. Nonlinear Sci. Appl. 2017, 10, 5668–5676. [Google Scholar] [CrossRef][Green Version]
- Hyers, D.H.; Isac, G.; Rassias, T. Stability of Functional Equations in Several Variables; Springer Science & Business Media: New York, NY, USA, 2012; Volume 34. [Google Scholar]
- Aderyani, S.R.; Saadati, R.; Allahviranloo, T. Existence, uniqueness and matrix-valued fuzzy Mittag–Leffler–Hypergeometric–Wright stability for P-Hilfer fractional differential equations in matrix-valued fuzzy Banach space. Comput. Appl. Math. 2022, 41, 234. [Google Scholar] [CrossRef]
- Chaharpashlou, R.; Saadati, R.; Atangana, A. Ulam–Hyers–Rassias stability for nonlinear Ψ-Hilfer stochastic fractional differential equation with uncertainty. Adv. Differ. Equ. 2020, 2020, 339. [Google Scholar] [CrossRef]
- Mihet, D.; Radu, V. On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. 2008, 343, 567–572. [Google Scholar] [CrossRef][Green Version]
- Miheţ, D.; Saadati, R. On the stability of some functional equations in Menger φ-normed spaces. Math. Slovaca 2014, 64, 209–228. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaharpashlou, R.; Saadati, R.; Lopes, A.M. Fuzzy Mittag–Leffler–Hyers–Ulam–Rassias Stability of Stochastic Differential Equations. Mathematics 2023, 11, 2154. https://doi.org/10.3390/math11092154
Chaharpashlou R, Saadati R, Lopes AM. Fuzzy Mittag–Leffler–Hyers–Ulam–Rassias Stability of Stochastic Differential Equations. Mathematics. 2023; 11(9):2154. https://doi.org/10.3390/math11092154
Chicago/Turabian StyleChaharpashlou, Reza, Reza Saadati, and António M. Lopes. 2023. "Fuzzy Mittag–Leffler–Hyers–Ulam–Rassias Stability of Stochastic Differential Equations" Mathematics 11, no. 9: 2154. https://doi.org/10.3390/math11092154
APA StyleChaharpashlou, R., Saadati, R., & Lopes, A. M. (2023). Fuzzy Mittag–Leffler–Hyers–Ulam–Rassias Stability of Stochastic Differential Equations. Mathematics, 11(9), 2154. https://doi.org/10.3390/math11092154